Soufflé: The Language

Bernhard Scholz
The University of Sydney

Soufflé: Extensions

e Datalog
* Lack of a standard
* Every implementation has its own language

* Soufflé
* Syntax inspired by bddbddb and muz/z3

* For multi-core servers with large memory
* large scale computing in mind

* Soufflé Language
* Makes Datalog Turing-Equivalent (arithmetic functors)

» Software engineering features for large-scale logic-oriented programming
e Performance
* Rule and relation management via components

Agenda

First example

Relation declaration

Type system for attributes
Arithmetic expressions
Aggregation

Records

Components

Performance / Profiling facilities
Interfaces

O 00 NO U WwWwhE

Invocation of Soufflé

* Invocation of soufflé:
e Evaluate input program

* Fla
. gSpecifies the output directory for relations (default: current)
e |f is - output is written to stdout.

* Flag
» Specifies the input directory for relations (default: current)

* Flag

* Compile the program (instead of running the interpreter)

First Example

* Type the following in file reachable.d!
.decl edge (n: symbol, m: symbol)

edge(“a”, “b”). /* facts of edge */
edge((lbll o II)
edge((lcﬂ Ilb”)
edge(”C” Hd”)

.decl reachable (n: symbol, m: symbol) output

reachable(x, y):- edge(x, y). // base rule

reachable(x, z): - edge(x, y), reachable(y, z). // inductive rule
e Evaluate: souffle -D- reachable.d!

Exercise

* Extend code from previous slide

* Add a new relation SCC(x,y)
* Rules for SCC

* If node x reaches node y and node y reaches node x, then (x,y) is in SCC

* Omit the flag “-D-"
 Where is the output?

* Run soufflé with flag “-c”

Soufflé’s Input: Remarks & C-Preprocessor

* Soufflé uses two types of comments (like in C++)
* Example:

e C preprocessor processes Soufflé’s input
* Includes, macro definition, conditional blocks

* Example:

Declarations of Relations

* Relations must be declared before being used:

. Type

-

symbol

symbol symlcp/

Relation Qualifier

/

symbol

edge(((a”’ ”b”). edge(llb”’ ”C”)_ edge(l(b”’ ”C”)_ EdgE(”C”’ ”d”).

reachable(a,b) :- edge(a,b).

reachable(a,c) :- reachable(a,b), edge(b,c).

Relation Qualifier

* Input relation
* Read from a tab-separated file <relation-name>.facts
* Still may have rules/facts in the source code
* Example:

* Intermediate relation: no qualifier
* Intermediate relation
* Example:

e Qutput relation
* Facts are written to file <relation-name>.csv (or stdout)
* Example:

e Cardinality of Output Relation
* Example:

Exercise: Relation Qualifier

e Read from file A.facts facts

* Copy facts from Ato B

e Copy facts from B to C and output
it to file C.csv

* Copy facts from C to D and output
the number of facts on stdout

No Goals in Souftflé
* Soufflé has no goals

e Goals are simulated by set of output relations

* Advantage: several independent goals by one evaluation

 Soufflé was designed for tool integration
* Many design decision taken from BDDBDDB

* Current state:
* interactive processing via sqlite3/db only

* Future:
* Plan to build query processor for goals

Type System

e Soufflé's type system is static
» Defines the attributes of a relation
» Types are enforced at compile-time
» Supports programmers to use relations correctly

* No dynamic checks at runtime
e Evaluation speed is paramount

* Type system relies on the set idea

* A type refers to either a subset of a universe or the universe itself
* Elements of subsets are not defined explicitely

e Subsets can be composed out of other subsets

Primitive Types

* Soufflé has two primitive types
e Symbols type:
 Number type:

* Symbols type
e Universe of all strings

* Internally represented by an ordinal number
e E.g., represents the ordinal number
* Symbol table used to translate between symbols and number id

* Number type
e Universe of all numbers
e Simple signed numbers: set to 32bit

Example: Primitive Types

.decl Name(n:|symbol))

Name(“Hans”).

\ . e o
Primitive Types
Name(“Gretl”). //

.decl Translate(n:|symbol, o:lnumber|) output

Translate(x,ord(x)) :- Name(x).

* Note that ord(x) converts a symbol to its ordinal number

Base & Union Types

* Primitive types: insufficient for large projects
* How to ensure that the programmer don’t bind wrong attributes?

 Differentiate symbols of different types in the program
* Partition number/symbol universe
* Form ontologies, ie., partial orders over subsets

* Large-Scale Datalog:
e ~1000 relations,
e ~100 different attribute types

* Example: DOOP, Oracle’s security analysis

Base Type

* Symbol types for attributes are defined by .symbol type declarative
.symbol type City
.symbol_type Town
.symbol_type Village

* Define (assumingly) distinct/different sets of symbols in a symbol
universe

Village

Union Type

* Union type is a compositional type
* Unifies a fixed number of symbol set types (base/union types)

* Syntax
type <ident> = <ident,> | <ident,> | ... | <ident,>

* Example
type Place = City | Town | Village

Village

Exercise: Type System

.symbol_type City

.symbol_type Town

.symbol_type Village

.type Place = City | Town | Village
.decl Data(c:City, t:Town, v:Village)

7 n 7

Data(“Sydney”, ”Ballina”, “Glenrowan”).

.decl Location(p:Place) output
Location(p) :- Data(p,_,); Data(_,p,); Data(_, ,p).

* Set Location receives values from cells of type City, Town, and Village.
* Note that ; denotes a disjunction (i.e., or)

Limitations of a Static Type System

* Disjoint set property not enforced at runtime

* Example:
.symbol type City
.symbol_type Town
.symbol _type Village
type Place = City | Town | Village
.decl Data(c:City, t:Town, v:Village)

7 n V(]

Data(“Sydney”, ”Sydney”, “Sydney”).
* Element “Sydney” is member of type City, Town, and Village.

Base/Union Types for Numbers

* Number subsets cannot be mixed with symbol subsets
* Base type is defined by .number type <name>

* Example:
.number_type Even
.number_type Odd
type All = Even | Odd

Exercise: Base / Union Types for Numbers

.number_type Even
.number_type Odd
type All = Even | Odd

.decl myEven(e:Even)
myEven(2).

.decl myOdd(o:0dd)

myOdd(1).

.decl myAll(a:All) output
myAll(x) :- myOdd(x); myEven(x).

Arithmetic Expression

e Arithmetic functors are permitted
* Goes beyond pure Datalog semantics

* Variables in functors must be grounded
* Termination might become a problem
* Example:

Exercise: Fibonacci Number

* Create the first 10 numbers of series of Fibonacci Numbers

* First two numbers are 1

* Every number after the first two is the sum of the two preceding ones
e Example: 1,1, 2, 3,5, 8, ...

 Solution

Arithmetic Functors and Constraints

e Arithmetic Functors * Arithmetic Constraints
e Addition: * Less than:
e Subtraction: * Less than or equal to:
 Division: * Equal to:
e Multiplication: * Not equal to:
* Modulo: * Greater than or equal to:
* Power: * Greater than:
* Counter:
* Bit-Operation:
.)) , and

* Logical-Operation
. , , and

Numbers in Soufflé

* Numbers in decimal, binary, and hexadecimal system
* Example:

* Decimal, hexadecimal, and binary numbers in the source code
* Restriction: in fact files decimal numbers only!

Logical Operation: Number Encoding

* Numbers as logical values like in C
* O represents false
* <>0 represents true

* Used on for logical operations
f - and

* Example:

Ticket Machine: Counters

* Functor S
* |Issue a new number every time when the functor is evaluated

* Example
» Useful for creating new context for points-to on the fly

* Create unique numbers for symbols

Exercise: Create Successor Relation for a Set

* Given set
* Create a successor relation
* Example:

* Assume that the total order is arbitrary
* Any total order goes for the successor

Solution |: Create a Successor Relation
.decl A(x:symbol) input

// count symbols
.decl Sequence(s:number, x:symbol) output
Sequence(S, x) :- A(x).

// use counter to produce successor
.decl Succ(x:symbol,y:symbol) output
Succ(x,y) :- Sequence(i,x), Sequence(i+1,y).

Solution Il: Create a Successor Relation

.decl A(x:symbol) input
.decl Less(x:symbol, y:symbol) output
Less(x,y) :- A(x), A(y), ord(x) < ord(y).

.decl Transitive(x:symbol, y:symbol) output
Transitive(x,z) :- Less(x,y), Less(y,z).

.decl Succ(x:symbol, y:symbol) output
Succ(x,y) :- Less(x,y), !Transitive(x,y).

Extension: Compute First/Last of Successors

Compute the first and the last element of the successor relation

String Functors and Constraints

* String Functors * String Constraints
* Concatenation: * Substring check:
e Retrieve Ordinal number: * Matching:

Example: String Functors & Constraints

.decl S(s: symbol)
S(“hello”). S(“world”). S(“souffle”).

.decl A(s: symbol) output

A(cat(x, cat(“ “, y))) :- S(x), S(y). // stitch two symbols together w. blank
.decl B(s:symbol) output

B(x) :- A(x), contains(“hello”, x).

.decl C(s:symbol) output

C(x) :- A(x), match (“world.*”, x).

Aggregation

 Summarizes information of queries

* Aggregates on stable relations only (cf. negation in Datalog)
* Aggregation result cannot be used for the sub-term of the aggregate directly
or indirectly.
e Aggregation is a functor

* Various types of aggregates
* Counting
* Minimum
* Maximum
* Sum

Aggregation: Counting

* Count the set size of its sub-goal
e Syntax: count:{<sub-goal>}
* No information flow from the sub-goal to the outer scope

* Example:
.decl Car(name: symbol, colour:symbol)
Car(“Audi”, "blue”).
Car(“VW”, “red”).
Car(“BMW”, “blue”).

.decl BlueCarCount(x: number) output
BlueCarCount(c) :- ¢ = count:{Car(_,”blue”)}.

Aggregation: Maximum

* Find the maximum of a set

* No information flow from the sub-goal to the outer scope, i.e., no
withess

* Syntax:
* Example:

Aggregation: Minimum & Sum

* Find the minimum/sum of a sub-goal

* No information flow from the sub-goal to the outer scope
* no witness

* Min syntax:
* Sum syntax:

Aggregation: Witnesses not permitted

* Witness: tuples that produces the minimum/maximum of a sub-goal
* Example:

<= not permitted!!

* Witness is bound in the max sub-goal and used in the outer scope

* Causes semantic/performance issues
* Memorizing a set; what does it mean for count/sum?

* Forbidden by the type-checker

Records

* Relations are two dimensional structures in Datalog
e Large-scale problems may require more complex structure

* Records break out of the flat world of Datalog
* At the price of performance (i.e. extra table lookup)

* Record semantics similar to Pascal/C
* No polymorph types at the moment

* Record Type definition

* Note: no output facility at the moment

Example: Records

// Pair of numbers
type Pair = [a:number, b:number]

.decl A(p: Pair) // declare a set of pairs
A([1,2]).
A([3,4]).
A([4,5]).

.decl Flatten(a:number, b:number) output
Flatten(a,b) :- A([a,b]).

Records: How does it work?

* Each record type has a hidden type relation
* Translates the elements of a record to a number

* While evaluating, if a record does not exist, it is created on the fly.

* Example:

type Pair = [a: number, b: number]
.decl A(p: Pair)

A([1,2]).
A([3,4]).
A([4,5]).

References

Recursive Records

* Recursively defined records permitted
 Termination of recursion via nil record

* Example

type IntList = [next: IntList, x: number]
.decl L(I: IntList)

L([nil, 10]).

L([r1,x+10]) :- L(r1), r1=[r2,x], x < 30.
.decl Flatten(x: number) output
Flatten(x) :- L([,x]).

IntList

et [next

> 0 V&
> 1 20 nil

13 "2 30

References

Recursive Records

e Semantics is tricky

 Relations/sets of recursive elements (i.e. set of references)
* Monotonically grow

e Structural equivalence by identity

* New records are created on-the-fly
* seamlessly for the programmer

* Closer to a functional programming semantics

* Future:
* Polymorphism might be possible at the expense of speed/space

Components

* Logic programs have no structure
 Amorphous mass of rules & relation declarations

* Creates serious software engineering challenges
* Encapsulation: separation of concerns
* Replication of code fragments
* Adaption of code fragments, etc.

* Solution: Soufflé's Component Model

* Meta semantics for Datalog
* Generator for Datalog code; dissolved at evaluation time
e Similar to C++ templates

Components (cont’d)

* Definition
* Defines a new component either from scratch or by inheritance
* Permitted: component definitions inside component definitions
* Syntax:

* Instantiation
* Each instantiation has its own name for creating a name space
* Type and relation definitions inside component inherit the name space
* Syntax:

Example: Component & Name Scoping

.comp myComp { .decl c1.A(x:number) output
.decl A(x:number) output cl.A(1).
A(1). cl.A(2).
A(2). >
} Expansion .decl c2.A(x:number) output
init c1 = myComp Sfter c2.A(1).
init c2 = myComp instantiation ~ C2.A(2).

* |nstantiation creates own name space for relation declarations and types

Example: Component Inheritance

.symbol _type s // outer scope: no name space
.decl A(x:s, y:s) input .decl A(x:s, y:s) input
.comp myC {

.decl B(x:s, y:s) output ‘ // hame scoping
B(x,y) :- A(x,y). // B is declared inside myC/myCC

} Exrz\insion .decl c.B(x:s, y:s) output
.comp myCC: myC { Instantt?;tion c.B(x,y) - A(x,y).

B(X)Z) .~ A(le)l B(ylz) C'B(X/Z) -~ A(le)l C'B(ylz)'
}
Init c = myCC

 Component myCC inherits from component myC

Overriding Rules of Super Components

* Example: * Instantiation result:
overrideable

* Rules/facts of the derived
component overrides the rules of the

super component

.override A Relation must be defined with
qualifier in super
component

* Component that overwrites rules
requires:

Component Parameters

* Example * Component and reside in
component case with parameter

* Depending on value of
 Component or expanded

e Conditional expansion of macros

e Parametrization of components

Summary: Components

* Encapsulation of specifications
* Name spaces provided for types/relations
* Instantiation provides scoping name of a component

* Repeating code fragments
* Write once / instantiated multiple times

* Components
* Inheritance of several super-components
* Hierarchies of functionalities

* Parameters
» Adapt components / specialize

* Future: refinement of the component model

Performance Tuning

» Soufflé computes optimal data-representations for relations

* Query scheduling is automatic
» Soufflé flag:
e Sub-optimal due to unrefined metrics for Selinger’s algorithm

* For high-performance:
* Programmer re-orders the atoms in the body of a rule

* Disable auto-scheduler for a rule by the strict qualifier
* Syntax:

* Provide your own query schedule
* Syntax:

Performance Example

.decl Edge(x:number, y:number)
Edge(1,2).

Edge(500,1).

Edge(i+1,i+2) :- Edge(i,i+1), i < 499.

.decl Path(x:number, y:number) printsize
Path(x,y) :- Edge(x,y).

// Path(x,z) :- Path(x,y), Path(y,z). .strict
// Path(x,z) :- Path(x,y), Edge(y,z). .strict
// Path(x,z) :- Edge(x,y), Path(y,z). .strict

Profiling

* Profiling flag for souffle:
* Produces a profile log after execution
e Use to provide profile information

e Simple text-interface

e Commands
* Rule:
e Relations:
* Graph plots for fixed-point:

C++ Interface / Integration into other Tools

* Souffle produces a C++ class from a Datalog program
* C++ class is a program on its own right
* Can be integrated in own projects seamlessly

* Interfaces for
* Populating EDB relations
* Running the evaluation
* Querying the output tables

e Use of iterators for accessing tuples
* Examples: souffle/tests/interfaces/ of repo

Example: C++ Interface

* Example

if(SouffleProgram *prog=ProgramFactory::newlnstance(”mytest")) {
prog->loadAll(”fact-dir”); // or insert via iterator
prog->run();
prog->printAll(); // or print via iterator
delete prog;

C++ Interface: Input Relations

* Insert method for populating data
if(Relation *rel = prog->getRelation(”"myRel")) {

for(auto input : myData) {
tuple t(rel);
t << input[0] << input[1];

rel->insert(t);

C++ Interface: Output Relations

* Access output relation via iterator
if(Relation *rel = prog->getRelation(”myOutRel")) {
for(auto &output : *rel) {
output >> celll >> cell2;
std::cout << celll << "-" << cell2 << "\n":

}

JNI Interface

* Recent designed/implemented by P. Subotic (UCL)

* Create Datalog program via AST objects
* No parsing of source code
* Applications
* implement a DSL in SCALA
e use Datalog as a backend
* Example:
 See souffle/interfaces/examples/Main.scala

Future Extensions

* Different data-types
* Floats/doubles missing
* Integers of various length

* Choice Operator
* Implementation of greedy algorithms
» Stable model theory

 Function Predicates
e Assertions for data consistencies

* Interactive Query Processing
e Better /O system
* Polymorphism in the type system

Join the Community

* Applications
* Java Points-To (on github)
* Soon to come: Finding bugs in SmartContracts
* Soon to come: Synthesis of policy controller for SDN
e Used in a parallelizing compiler: Insieme (Univ of Innsbruck, Austria)

 Soufflé (on github)
* Feature Extensions
e Refactoring
* Bug Fixing
* Documentation

