™,

-\

Engineering Static Analyzers
with Souffle

Bernhard Scholz Pavle Subotic
The University of Sydney, Australia University College London, UK
Herbert Jordan Alexander Jordan

University of Innsbruck, Austria Oracle Labs, Brisbane

Agenda

 Soufflé Overview as a Tool
* Brief Introduction to Datalog
 Soufflé as a Language

e Use-Cases: Static Program Analysis

Souffle: Overview
Bernhard Scholz

The University of Sydney

Static Program Analysis Tools

* Lot’s of applications for static program analysis
* Bug finding, compiler optimisation, program comprehension

* Fully functional analysis for real languages is expensive!

e State-of-the-art tools
* Developed in languages like C++ / MLOCs
* Testing
* Fine-Tuning: scalability vs. precision vs. effort to develop I

* Need to rapidly develop static program analysis tools
* Deep design space explorations p \

Datalog as DSL for Static Program Analysis

* Datalog in static program analysis Input Input
Extractor :
* Reps’94, Engler’96, ... Program Relations
e Datalog is restricted Horn-Logic
* Declarative programming for recursive relations Program Datalog

* Finite constant set Analysis Engine
* No back-tracking for evaluation / fast

* Extensional/Intensional database

* Extractor Result
e Syntactic translation to logical relations

* Datalog Engine
» Extensional Database/Facts: input relations
* Intensional Database/Rules: program analysis specification

Security Analysis in Datalog

* Vulnerable statement must be protected in the code
e Safe and Unsafe regions in the CFG

Source: CFG: Datalog Program:
void m(int i, int j){
s: while (i < j){
11: protect();

Unsafe("”s"”).
Unsafe(y) :-
Unsafe(x),

12: i++; Edge(x, Y).,

} !Protect(y).
13: vulnerable();
} Violation(x) :-

Vulnerable(x),
Unsafe(x).

Why is Datalog not everywhere?

¥

C++: |2 sec, 34 MB

using Tuple = std ::array<int ,2>;
using Relation = std ::set<<Tuple >;
Relation edge, tc;

edge = someSource ();

tc = edge;

auto delta = tc;

while (! delta .empty ()) {
Relation nDelta;
for (const auto& t1 delta) {
auto a = edge.lower_bound({tl1[1],0});

auto b = edge.upper_bound({tl1[1]+1,0});

for(auto it = a; it != b; 4++it) {
auto& t2 = xit ;

Tuple tr({tl1[0],t2]1]});

if (!contains(tc, tr))

nDelta.insert (tr);

¥
¥

tc.insert(nDelta.begin(),nDelta.end ());
delta .swap(nDelta);

¥

340 sec, 1667 MB

path(X,Y) :— edge(X,Y).
path(X,Z) :— path(X,Y),
edge(Y,Z).

1Z Datalog:

Why the Gap?

- General evaluation algorithms
- Existing engines focus on DB apps

What can we do?

£ ™
.

N

. A New Datalog Synthesis Tool

* New Paradigm for Evaluating Datalog Programs
* To achieve similar performance to hand-written C++ code

* Assumptions
* Rules do not change in static program analysis tools
e Facts (= input program representation) may change
* Executed on large multi-core shared-memory machines

 Solution:
* Synthesis with Futamura projections
* Apply partial specialization techniques

* Synthesis in stages
* Each stage opens are new opportunities for optimisations

Spec

How does Souff

Inputs

Fact
Extractor

Facts

Facts

ANALYZER

i

SOUFFLE

e work?

Result

Standalone tool

/ as binary or library

L Result

Futamura Projections

 Specialization

Specialized
Program

Compiler

Target
Program

 Specialization

* Hierarchy

Souftlé's Performance
* Example path(X,Y) :— edge(X,Y).
path(X,Z) = path(X,Y),
edge(Y,Z).
* Performance Numbers
Tool Time [s] | Memory [MB]
Soufflé / B-tree (sequential) | 1.26 25.6
Soufflé / B-tree (parallel) 0.42 26.3
Soufflé / Trie (sequential) 0.38 3.5
Soufflé / Trie (parallel) 0.12 4.5

* \/s. Hand-crafted: 2s / 34MM

SLequSri’ElnC(;FénSJDEW A ORACLE@

Open JDK 7:
7M LOC, 1.4M variables, 350K heap objects, 160K methods, 590K invocations,
1G tuples

Security _

Soufflé —c

JDK X build Y Analyzer X

. jl T
USE CASE B! 15 amazon
N7 webservices

~10-100K Instances, 90% static rules, 10% dynamic rules

Results

&

Java Soufflé compiler
External Tool
Interface
Soufflé Interpreter

Analysis + Data

90%

10%

formatik

institut fur

USE CASE C:

Static Parallel C/C++ Code Analysis Framework
nsbruck|

Insieme Compiler Framework

< E
% > IR > &-’ > exe
S - 3
(I o

Cd

P - , N -~ -
- / N T~ _
Insieme’s Datalog based Result Extractor > A;;nalyliis ’
) esults
Analysis Module S

m m m
D ETIE

—b Insieme’s Datalog
Analysis Framework

Souffle

— [T

Input Facts

—
(@)
+—
(@)
©
—
-+
x
L
4+
(]
©
L

USE CASE D:.

Security In Smart Contracts

< ~
N LI Scraper
Blockchain
y,

Bytecode

606060405260003
57c0100000000000
000000000000000
000000000000000
000000000000000
90048063193ddd2c
146037576035565
bBB5b6042600480
5050605a565b604
051868215158152
602001915050604
05180910390135b6
000600560006000
5054149050606b5
65b9056

disassemble

Extractor

CFG

™ ™
Disassembler Decompiler
J J
EVM Code 3-Address Code
Ox32 PUSH1 => 0x35 0x264: UMPDEST
0x34 UMP 0x26d:V0O = 0x20
Ox26f:V1 = 0x40
0x35 UMPDEST Ox271:V2= M [0x40]
0x36 STOP 0x274:V3 = SUB VarVv2
decompiler 0x276:V4 = 0x0

0x37 UMPDEST
Ox38 PUSH1 => 0x42
0x3a PUSH1 => 0x€
0x3cDUP1

0x3d POP

Ox3e POP
Ox3fPUSH1 => 0x5
Ox41 UMP

-

0x279:V5 = Ox61lda
0x27c:V6 = GAS
0x27d:V7 = SUB V6 0x6
Ox27e:V8 = CALLV7 Var
0x27f:V9 = BZERO V8
0x280:V10 = Ox2
0x283: THROW IV9

—

Results

Logical
Relations
A
Dataflow /
Exploit
Analyses
Datalog
extracter Log ica |
Relations

USE CASE E: @OOP

Points-To Analysis

* Java Points-To Analysis in Datalog
* Builds memory abstractions for Java programs
* Feature-Rich: various types of points-to contexts

* Efficient implementation _
Variables

* Pipeline

* SOOT for extracting semantic relations —

e Parameterizable analysis

* Recently ported to Soufflé
 SOAP’17

Heap Objects

\\>

A Brief Introduction to
Datalog

Adapted from Kifer/Bernstein/Lewis/Roehm

Datalog

* Datalog is logic-based query language
* Easy to use relational programming language
* Recursive queries
* Adapts Prolog-style syntax

* Based on first-order logic
e Decidable fragment of logic
* Finite Universe
* No functors

Recently New Interest in Datalog

Original Research is from the 1980’s and "90s

* cf. system Coral, LDL++

Datalog for declarative querying recursive structures
* E.g. graphs or networks

* New applications can benefit from this
* Data Integration

Program Analysis

Declarative Networking

Security

Graph databases

Cf. Huang, Green, Loo: “Datalog and Emerging Applications: An Interactive Tutorial” SIGMOD 2011.

Basic Syntax of Datalog

* Three types of Horn Clauses
fact.
head :- body.

?- body.

 Building blocks for clauses are Predicates
* A Boolean function taking a fixed number of args
* A predicate followed by its arguments is called an atom

‘Happy Drinker’ Example: Facts

* Predicates example:
frequents(Drinker, Bar)
likes(Drinker, Beer)
sells(Bar, Beer, Price)

* Facts example:
frequents(“jon”, “the _rose”).
likes(“jon”, “vb”).
sells(“the rose”, “vb”, 5).

* Query example:
?- sells(Bar, Beer, Price).

Basic Rule Structure of Datalog

* Define a relation person that lists all names of persons from likes relation

* Define a relation cheapBars containing the names of all bars selling cheap
“loewenbrau” beer (costing less than S4).

* Retrieve the cost of Loewenbraeu at the “ueberbar”

* To find the bar name and beer prices of all bars in cheapBars that sell
“loewenbrau” for less than S4

Anatomy of a Rule

frequents(D,Bar) ,

I\ikes(D,Beer),sells(Bar,Beer,P

Head \ Body

Read this (read *, as AND)
symbol “if”

B The rule is a query asking for *happy” drinkers
--- those that frequent a bar that serves a beer that they like.

B Variable bindings as equivalence constraints
B Variables must be grounded, i.e., show up in Atoms in Bodly.

Atoms in Body

* An is a , or relation name with variables or constants
as arguments.

* The head of a rule is an atom; the body is the conjunction of one or
more atoms

* Example:
sells(Bar,|Beern, |P

The predicate \

= name of a Arguments are
relation variables

Rule Interpretation

D enis(@
//q ~ /=

Distinguished Nondistinguished
variable variables

Interpretation: drinker D is happy if there exist a
Bar, a Beer, and a price P such that D frequents

the Bar, likes the Beer, and the bar sells the beer
at price P.

Negated Atoms

* We may put NOT in front of an atom to negate its meaning.
* Example:

e Circular negated definitions (direct / indirect) are not permitted.
* Example: <= no good.

Datalog Program

° A is a collection of facts, rules, and a query.

* In a program, predicates can be either

 EDB = = set of ground facts, e.g., predicates whose
relations are stored in a database.

* IDB = = relations defined & computed by rules.

 Two major types of evaluation strategies
* Top-Down, i.e., from the goal to the facts.
* Bottom-Up, i.e., from the facts to the goal.

References

Abiteboul/Hull/Vianu: Foundations of Databases (ebook)

e Chapter 12-15
Kifer/Bernstein/Lewis: Database Systems: An Application-Oriented Approach,
Introductory Version (2nd edition)

* Chapter 13.6
Ramakrishnan/Gehrke: Database Management Systems (3rd edition - the ‘Cow’
book)

e Chapter 24
Garcia-Molina/Ullman/Widom: Database Systems: The Complete Book (1st
edition)

e Chapter 10

Soufflé: The Language

Bernhard Scholz
The University of Sydney

Soufflé: Extensions

e Datalog
* Lack of a standard
* Every implementation has its own language

* Soufflé
* Syntax inspired by bddbddb and muz/z3

* For multi-core servers with large memory
* large scale computing in mind

* Soufflé Language
* Makes Datalog Turing-Equivalent (arithmetic functors)

» Software engineering features for large-scale logic-oriented programming
e Performance
* Rule and relation management via components

Agenda

First example

Relation declaration

Type system for attributes
Arithmetic expressions
Aggregation

Records

Components

0 N o Uk wh e

Performance / Profiling facilities

Installation

e Supported system
* UNIX: Debian, FreeBSD, MAC OS X, Win10 subsystem, etc.

* Releases are issued regularly
* http://github.com/souffle-lang/souffle/releases

e Current release V1.1

* As a Debian Package
* As a MAC OS X Package

* From source code
e http://github.com/souffle-lang/souffle/

Invocation of Soufflé

* Invocation of soufflé:
e Evaluate input program

 Set input fact directory with flag
» Specifies the input directory for relations (default: current)

* Set output directory with flag
 Specifies the output directory for relations (default: current)
e |f is - output is written to stdout.

Transitive Closure Example

* Type the following in file reachable.d!
.decl edge (n: symbol, m: symbol)

edge(“a”, “b”). /* facts of edge */
edge((lbll o II)
edge((lcﬂ Ilb”)
edge(ﬂcﬂ ”d”)

.decl reachable (n: symbol, m: symbol)
.output reachable // output relation reachable

reachable(x, y):- edge(x, y). // base rule
reachable(x, z): - edge(x, y), reachable(y, z). // inductive rule
e Evaluate: souffle -D- reachable.d|

Exercise

* Extend code from previous slide

* Add a new relation SCC(x,y)
* Rules for SCC

* If node x reaches node y and node y reaches node x, then (x,y) is in SCC
* Check whether a node is cyclic
* Check whether the graph is acyclic

* Omit the flag “-D-"
 Where is the output?

Same Generation Example

* Given a tree, find who belongs to the same generation
.decl Parent(n: symbol, m: symbol)

Parent("d", "b"). Parent("e", "b"). Parent("f","c").
Parent("g", "c"). Parent("b", "a"). Parent("c","a").
.decl Person(n. symbol)

Person(x) :- Parent(x,).
Person(x) :- Parent(_, x).

.decl SameGeneration (n: symbol, m: symbol)

SameGeneration(x, x):- Person(x).

SameGeneration(x, y):- Parent(x,p), SameGeneration(p,q), Parent(y,q).
.output SameGeneration

Data-Flow Analysis Example

« DFA determines static properties of programs
 DFAis a unified theory; provides information for global analysis
« DFA based on control flow graph, and node properties

« Example: Reaching Definition
» Assignment of variable can directly affect the value at another point
* Unambiguous definition d of variable v

« Definition reaches a statement v if all paths from d to u does not contain any
unambiguous definition of v

* Note that functions can have side-effects to variables

Example: Reaching Definition

(start

@§®

« Unambiguous definitions d, and d, of
variable v

* Might reach d, node B3?

* Might reach d, node B3?

 Paths and effects of basic blocks
influence solution

* Forward problem 38

Example: Reaching Definition

(start

.decl Edge(n: symbol, m: symbol)

Edge("start", "b1"). Edge("b1", "b2"). Edge("b1", "b3").
Edge("b2", "b4"). Edge("b3", "b4"). Edge("b4", "b1").
Edge("b4", “end").

.decl GenDef(n: symbol,n:symbol)
GenDef("b2", "d1"). GenDef("b4", "d2").
.decl KillDef(n: symbol,n:symbol)
KillDef("b4", "d1"). KillDef("b2", "d2").
.decl Reachable(n: symbol,n:symbol)
Reachable(u,d) :- GenDef(u,d).
Reachable(v,d) :- Edge(u,v), Reachable(u,d), IKillDef(u,d).

.output Reachable
39

Soufflé’s Input: Remarks & C-Preprocessor

* Soufflé uses two types of comments (like in C++)
* Example:

e C preprocessor processes Soufflé’s input
* Includes, macro definition, conditional blocks

* Example:

Declarations of Relations

* Relations must be declared before being used:

. Type
symbol, bjsym I@g/
-

symbol, b:|symbol

.output reachable

edge(ﬂal)’ ”b”). edge(ﬂbl)’ ”C”). edge((lbﬂ’ ”C”). edge(”C”, ”d”).
reachable(a,b) :- edge(a,b).
reachable(a,c) :- reachable(a,b), edge(b,c).

|/O Directives

* Input directive
* Read from a tab-separated file <relation-name>.facts
* Still may have rules/facts in the source code
* Example:

* Output directive
* Facts are written to file <relation-name>.csv (or stdout)
* Example:

* Print size of a relation
* Example:

Exercise: Relation Qualifier

e Read from file A.facts facts

* Copy facts from Ato B

e Copy facts from B to C and output
it to file C.csv

* Copy facts from C to D and output
the number of facts on stdout

No Goals in Soufflé

 Soufflé has no traditional Datalog goals

* Goals are simulated by output directives

* Advantage
» several independent goals by one evaluation

* Soufflé’s language was designed for tool integration
* Many design decision taken from BDDBDDB / Z3

* Current state:
* interactive processing via sqlite3/db only

* Future:
* Provenance and query processor for computed IDBs (coming soon)

More Info about |/O Directives

e Relations can be loaded from/stored to
 Arbitrary CSV files (change delimiters / columns / filenames / etc.)

 Compressed text files
* SQLITE3 databases

* The features are controlled via a list of parameters
* Example:

* Documentation:
http://souffle-lang.org/docs/io/

Rules with Multiple-Heads

* Rules with multiple heads permitted

e Syntactic sugar to minimize coding effort

* Example:

.decl A(x:number)
A(1). A(2). A(3).
.decl B(x:number)
.decl C(x:number)

B(x), C(x) :- A(x).
.output B,C

e

.decl A(x:number)
A(1). A(2). A(3).
.decl B(x:number)
B(x) :- A(x).

.decl C(x:number)
C(x) :- A(x).
.output B,C

Disjunctions in Rule Bodies

* Disjunction in bodies permitted
e Syntactic sugar to shorten code

* Example:

.decl edge(x:number, y:number) .decl edge(x:number, y:number)
edge(1,2). edge(2,3). edge(1,2). edge(2,3).

.decl path(x:number, y:number) .decl path(x:number, y:number)
path(xy) :- path(x,y) :- edge(x,y).

edge(x,y); m |
edge(x,q), path(q,y). path(x,y) :- edge(x,q), path(q,y).
.output path .output path

Type System

e Soufflé's type system is static
» Defines the attributes of a relation
» Types are enforced at compile-time
» Supports programmers to use relations correctly

* No dynamic checks at runtime
e Evaluation speed is paramount

* Type system relies on the set idea

* A type refers to either a subset of a universe or the universe itself
* Elements of subsets are not defined explicitly

e Subsets can be composed out of other subsets

Primitive Types

* Soufflé has two primitive types
* Symbol type:
 Number type:

* Symbol type
e Universe of all strings

* Internally represented by an ordinal number
e E.g., represents the ordinal number
* Symbol table used to translate between symbols and number id

* Number type
e Universe of all numbers
e Simple signed numbers: set to 32bit

Example: Primitive Types

.decl Name(n:|symbol))

Name(“Hans”).

\ . e o
Primitive Types
Name(“Gretl”). //

.decl Translate(n:|symbol|, o:fnumber)

Translate(x,ord(x)) :- Name(x).
.output Translate

* Note that ord(x) converts a symbol to its ordinal number

Base & Union Types

* Primitive types
* Large projects require a rich type systems
* Large projects: several hundred relations (e.g. DOOP, Security Analysis)
 How to ensure that programmers don’t bind wrong attribute types?

* Partition number/symbol universe

* Form sub-set lattices over base subsets

Base Type

* Symbol types for attributes are defined by .symbol type declarative
.symbol type City
.symbol_type Town
.symbol_type Village

* Define (assumingly) distinct/different sets of symbols in a symbol
universe

Village

Union Type

* Union type is a compositional type
* Unifies a fixed number of symbol set types (base/union types)

* Syntax
type <ident> = <ident,> | <ident,> | ... | <ident,>

* Example
type Place = City | Town | Village

Village

Exercise: Type System

.symbol_type City

.symbol_type Town

.symbol_type Village

.type Place = City | Town | Village
.decl Data(c:City, t:Town, v:Village)

7 n 7

Data(“Sydney”, ”Ballina”, “Glenrowan”).

.decl Location(p:Place) output
Location(p) :- Data(p,_,); Data(_,p,); Data(_, ,p).

* Set Location receives values from cells of type City, Town, and Village.
* Note that ; denotes a disjunction (i.e., or)

Limitations of a Static Type System

* Disjoint set property not enforced at runtime

* Example:
.symbol type City
.symbol_type Town
.symbol _type Village
type Place = City | Town | Village
.decl Data(c:City, t:Town, v:Village)

7 n V(]

Data(“Sydney”, ”Sydney”, “Sydney”).
* Element “Sydney” is member of type City, Town, and Village.

Base/Union Types for Numbers

* Number subsets cannot be mixed with symbol subsets
* Base type is defined by .number type <name>

* Example:
.number_type Even
.number_type Odd
type All = Even | Odd

Exercise: Base / Union Types for Numbers

.number_type Even
.number_type Odd
type All = Even | Odd

.decl myEven(e:Even)
myEven(2).

.decl myOdd(o:0dd)

myOdd(1).

.decl myAll(a:All)

.output myAll

myAll(x) :- myOdd(x); myEven(x).

Arithmetic Expression

e Arithmetic functors are permitted
* Goes beyond pure Datalog semantics

* Variables in functors must be grounded
* Termination might become a problem
* Example:

Exercise: Fibonacci Number

* Create the first 10 numbers of series of Fibonacci Numbers

* First two numbers are 1

* Every number after the first two is the sum of the two preceding ones
e Example: 1,1, 2, 3,5, 8, ...

 Solution

Arithmetic Functors and Constraints

e Arithmetic Functors * Arithmetic Constraints
e Addition: * Less than:
e Subtraction: * Less than or equal to:
 Division: * Equal to:
e Multiplication: * Not equal to:
* Modulo: * Greater than or equal to:
* Power: * Greater than:
* Counter:
* Bit-Operation:
.)) , and

* Logical-Operation
. , , and

Numbers in Soufflé

* Numbers in decimal, binary, and hexadecimal system
* Example:

* Decimal, hexadecimal, and binary numbers in the source code
* Restriction: in fact files decimal numbers only!

Logical Operation: Number Encoding

* Numbers as logical values like in C
* O represents false
* <>0 represents true

* Used on for logical operations
f - and

* Example:

Ticket Machine: Counters

* Functor S
* |Issue a new number every time when the functor is evaluated

* Limitation
* Not permitted in recursive relations

* Create unique numbers for symbols

Exercise: Create Successor Relation for a Set

* Given set
* Create a successor relation
* Example:

e Assume total order given by ordinal number of symbols
* Ordinal number of a symbol is obtained by ord functor
e Example: ord(“hello”) gives the ordinal number of string “hello”

Solution: Create a Successor Relation

.decl A(x:symbol) input
.decl Less(x:symbol, y:symbol)
Less(x,y) :- A(x), A(y), ord(x) < ord(y).

.decl Transitive(x:symbol, y:symbol)
Transitive(x,z) :- Less(x,y), Less(y,z).

.decl Succ(x:symbol, y:symbol)
Succ(x,y) :- Less(x,y), !Transitive(x,y).

.output Less, Transitive, Succ

Extension: Compute First/Last of Successors

Compute the first and the last element of the successor relation

String Functors and Constraints

* String Functors * String Constraints
* Concatenation: * Substring check:
 String Length: * Matching:

* Sub-string:
where is the start position
counting from 0 and is the

length of the sub-string of x.
e Retrieve Ordinal number:

Example: String Functors & Constraints

.decl S(s: symbol)
S(“hello”). S(“world”). S(“souffle”).

.decl A(s: symbol)
A(cat(x, cat(“ “ y))) :- S(x), S(y). // stitch two symbols together w. blank

.decl B(s:symbol)
B(x) :- A(x), contains(“hello”, x).

.decl C(s:symbol)
C(x) :- A(x), match (“world.*”, x).
.output A, B, C // output directive

Another String Example

* Generate all suffixes of a string
.decl A(x:symbol)
A("hello"). // initial string

A(substr(x,1,strlen(x)-1)) :- // inductive rule
A(x),
strlen(x) > 1.

.output A

Aggregation

 Summarizes information of queries

* Aggregates on stable relations only (cf. negation in Datalog)
* Aggregation result cannot be used for the sub-term of the aggregate directly
or indirectly.
e Aggregation is a functor

* Various types of aggregates
* Counting
* Minimum
* Maximum
* Sum

Aggregation: Counting

* Count the set size of its sub-goal
e Syntax: count:{<sub-goal>}
* No information flow from the sub-goal to the outer scope

* Example:
.decl Car(name: symbol, colour:symbol)
Car(“Audi”, "blue”).
Car(“VW”, “red”).
Car(“BMW”, “blue”).

.decl BlueCarCount(x: number)
BlueCarCount(c) :- ¢ = count:{Car(_,”blue”)}.
.output BlueCarCount

Aggregation: Maximum

* Find the maximum of a set

* No information flow from the sub-goal to the outer scope, i.e., no
withess

* Syntax:
* Example:

Aggregation: Minimum & Sum

* Find the minimum/sum of a sub-goal

* No information flow from the sub-goal to the outer scope
* no witness

* Min syntax:
* Sum syntax:

Aggregation: Witnesses not permitted!

* Witness: tuples that produces the minimum/maximum of a sub-goal
* Example:

<= not permitted!!

* Witness is bound in the max sub-goal and used in the outer scope

* Causes semantic/performance issues
* Memorizing a set; what does it mean for count/sum?

* Forbidden by the type-checker

Records

* Relations are two dimensional structures in Datalog
e Large-scale problems may require more complex structure

* Records break out of the flat world of Datalog
* At the price of performance (i.e. extra table lookup)

* Record semantics similar to Pascal/C
* No polymorph types at the moment

* Record Type definition

* Note: no output facility at the moment

Example: Records

// Pair of numbers
type Pair = [a:number, b:number]

.decl A(p: Pair) // declare a set of pairs
A([1,2]).
A([3,4]).
A([4,5]).

.decl Flatten(a:number, b:number) output
Flatten(a,b) :- A([a,b]).

Records: How does it work?

* Each record type has a hidden type relation
* Translates the elements of a record to a number

* While evaluating, if a record does not exist, it is created on the fly.

* Example:

type Pair = [a: number, b: number]
.decl A(p: Pair)

A([1,2]).
A([3,4]).
A([4,5]).

References

Recursive Records

* Recursively defined records permitted
 Termination of recursion via nil record

* Example

type IntList = [next: IntList, x: number]
.decl L(l: IntList)

L([nil,10]).

L([r1,x+10]) :- L(r1), r1=[r2,x], x < 30.
.decl Flatten(x: number)

Flatten(x) :- L([_,x]).

.output Flatten

IntList

et [next

> 0 %
> 1 20 nil

13 "2 30

References

Recursive Records

e Semantics is tricky

 Relations/sets of recursive elements (i.e. set of references)
* Monotonically grow

e Structural equivalence by identity

* New records are created on-the-fly
* seamlessly for the programmer

* Closer to a functional programming semantics

* Future:
* Polymorphism might be possible at the expense of speed/space

Components in Souffle

* Logic programs have no structure
 Amorphous mass of rules & relation declarations

* Creates serious software engineering challenges
* Encapsulation: separation of concerns
* Replication of code fragments
* Adaption of code fragments, etc.

* Solution: Soufflé's Component Model

* Meta semantics for Datalog
* Generator for Datalog code; dissolved at evaluation time
e Similar to C++ templates

Components (cont’d)

* Definition
* Defines a new component either from scratch or by inheritance
* Permitted: component definitions inside component definitions
* Syntax:

* Instantiation
* Each instantiation has its own name for creating a name space
* Type and relation definitions inside component inherit the name space
* Syntax:

Example: Component & Name Scoping

.comp myComp { .decl c1.A(x:number)

.decl A(x:number) .output c1.A

.output A cl.A(1).

A(1).) c1.A(2).

A(2). Expansion
} Sfter .decl c2.A(x:number) output
1nit c1 = myComp instantiation .output cZ.A
.init c2 = myComp c2.A(1).

c2.A(2).

* [nstantiation creates own name space for relation declarations and types

Example: Component Inheritance

.symbol_types // outer scope: no name space
.decl A(x:s, y:s) .decl A(x:s, y:s)
Anput A Anput A
.comp myC {
.decl B(x:s, y:s) ‘ // name scoping
.output B // B is declared inside myC/myCC
B(x,y) :- A(x,y). Expansion .decl c.B(x:s, y:s)
} After .output c.B
.comp myCC: myC { Instantiation c.B(x,y) :- A(x,y).
B(XIZ) .~ A(le)l B(ylz) C'B(XIZ) .~ A(le)l C'B(ylz)'
}
nit ¢ = myCC

 Component myCC inherits from component myC

Overriding Rules of Super Components

* Example: * Instantiation result:
overrideable

* Rules/facts of the derived
component overrides the rules of the

super component

_ * Relation must be defined with
.override A qualifier in super
component

* Component that overwrites rules
requires:

Component Parameters

* Example * Component and reside in
component case with parameter

* Depending on value of
 Component or expanded

e Conditional expansion of macros

e Parametrization of components

Example: Components

* Develop a library of components for graphs

* The library should contain various functionality
* A component for a directed graph
* A component for an undirected graph
* A component that checks for a cycle in a graph
* A component that checks whether a graph is acyclic

* The Component library should be extendable, reuse other
components, etc.

Summary: Components

* Encapsulation of specifications
* Name spaces provided for types/relations
* Instantiation produces a scoping name of a component

* Repeating code fragments
* Write once / instantiated multiple times

* Components
* Inheritance of several super-components, i.e., multiple inheritance
* Hierarchies of functionalities

* Parameters
» Adapt components / specialize

* Future: refinement of the component model

Soufflé's Performance Aspect

* How to gain faster Datalog programs?
* Compile to achieve peak performance

e Scheduling of queries
* User annotations or automated

* Find faster queries
* Find faster data models

* Profiling is paramount
» Textual and graphical user interface for profiling programs

* Practical observation
* Only a handful of rules will dominate the execution time of a program

Performance: Souffle’s Compilation Flags

* Compile and execute immediately
* Option —
* Example: souffle —c test.d|

* Generate stand-alone executable

e Option —o <executable>
* Example: souffle —o test test.d|

* Feedback-Directed Compilation
e Option: --auto-schedule
* Example: souffle --auto-schedule test.dl

Performance Tuning

» Soufflé computes optimal data-representations for relations

* Query scheduling can be made automatic
» Soufflé flag:
e Sub-optimal due to unrefined metrics for Selinger’s algorithm

* For high-performance:
* Programmer re-orders the atoms in the body of a rule

* Disable auto-scheduler for a rule by the strict qualifier
* Syntax:

* Provide your own query schedule
* Syntax:

Performance Example

.decl Edge(x:number, y:number)
Edge(1,2).

Edge(500,1).

Edge(i+1,i+2) :- Edge(i,i+1), i < 499.

.decl Path(x:number, y:number)
.printsize Path

Path(x,y) :- Edge(x,y).

// Path(x,z) :- Path(x,y), Path(y,z). .strict
// Path(x,z) :- Path(x,y), Edge(y,z). .strict
// Path(x,z) :- Edge(x,y), Path(y,z). .strict

Profiling

* Profiling flag for Soufflé:
* Produces a profile log after execution
e Use to provide profile information

e Simple text-interface and HTML output with JavaScript

e Commands
* Help:
e Rule:
* Relations:
e Graph plots for fixed-point:

Profiling (cont’d

* Option —j produces HTML file; Graphical Representation of Performance

Toggle number precision Graph iterations of selected
Non Copy
Total Rec Rec Time Tup]es
Name ID Time Time Time -

SocialNet.reachable R11 912ps 5.5pus 83.1ps 2.6ps 3

Total run time
Equal.reacha

Toggle num Name

SocialNet.reachable
Equal.reachable
London.reachable
Equal.edge
London.train.reachable

result

R11

R2

R9

R1

R6

Total
Time
91.2ps
79.5pus
61.5ps

41.5ps

31.9ps

R12 27.4ps

Non
Rec
Time
5.5us
6.6ps
10.7ps
19.4ps

24 8ps

27.4ps

Rec
Time
83.1ps
67.9ps
45.4ps

17.9ps

7.1ps

Copy
Time

2.6ps

5.0ps

5.4ps

4.2ps

0

Tuples

% of
Time
24.1
20.9
16.2
10.9

8.42

721

% of
Tuples

8.57

25.7

171

2.86

143

Source
/Users/Dom/cpp_...

/Users/Dom/cpp_...

/Users/Dom/cpp_...

/Users/Dom/cpp_...

/Users/Dom/cpp_...

/Users/Dom/cpp_...

Program Analysis Examples

Bernhard Scholz
The University of Sydney

Points-To Analysis

* Flow-insensitive, inclusion-based, context-insensitive
(cf. Whalley’04)

e Abstract Domain

e Variables
* Local, actual/formal parameters, return-values, bases, this-variables

* Heap-allocated objects
* Creation-site as an abstraction for dynamically created objects
* Heap-allocated object have fields

* Relations for computing points-to analysis

* vP(v, h): variable v may point to heap object h
* hP(hy, f, h,): field f of h; may point to h,

Points-To Analysis

Allocations h: v=new C() vP(v,h) :- “h: v = new C()".
Store v,.f=v, hP(hfh,) - “v . f=v7

vP(v,,h,), vP(v,,h,).
Load v, = V,.f vP(v,, h,) :- “v, = v .1,

hP(h,,fh,), vP(v,,h,).

Moves, Arguments v, =V, VP(v,, h) :- “v, =v,%,
vP(v,,h).

Points-To Example

Variables
a:x=new Foo()

Heap Objects
Y=X;
if (cond) { —
2 = Yy

} else {
b:z=new G();

VP — —>

z.t = vy;

Example: Points-To in Souffle

e Simple Input Language with 4 statement types
Allocation: <var> = new()

Assignment: <varl> = <var2>
Store: <varl>.<field> = <var2>
Load: <varl> = <var2>.<field>

* Example:

Example: Extractor

* Execute Extractor

* Expects a directory facts in current directory
* Example program

* Produces files
 facts/new.facts facts/assign.facts facts/load.facts facts/store.facts

Example: Extractor

* Execute Extractor

* Expects a directory facts in current directory
* Example program

* Produces files
 facts/new.facts facts/assign.facts facts/load.facts facts/store.facts

Example: Fact Files Encoding

* Variable Mapping to Numbers
e vl—>1,v2->2,v3->3
* First allocation: 0

 Generated Relations:

new facts ssign.facts
ﬁ

store.facts load.facts

var Tvar s [l var v rld
1 f 2 3 1 f

* Example program

Example: Points-To EDB

e Souffle’s relation declarations for fact files

Example: Points-To Rules

Lambda Calculus Case Study

* Step 1: Input language
* Untyped lambda calculus

* Core grammar:

* term ::=<var> // a variable, e.g. x
| \<var>.term // an abstraction (=function), e.g. “\x . x”
| term term // an application (=call), e.g. “a b”

e Extended with:
* let bindings and parenthesis support (for usability)

* |IR: AST of lambda calculus expression

Constructing the Analysis

e Step 2: Encoding into Relations
* Encoding of AST in relational format via lc-extractor

 Step 3: Specify Analysis
* One generic DataFlow analysis component handling parameter passing
» Utilizing a specialization of itself for determining control flow information

* Instantiated for:
e Control flow information: which function is called where (dynamic binding)
* Boolean value analysis: analysis result requested by the user
* Arithmetic value analysis: analysis result requested by the user

e Step 4: Interpret Result

 the resulting tables contain (over-approximation) values of Boolean and Arithmetic
value of root term

Examplel

3 g 0

(% . %) Oy . 9) 0z 2)) trud)

* Expressions are labeled and encoded in abs and vars, bool_lit,
num_lit, root, etc.

* Applications encoded in apps e.g., 2 35 means 2 is an application
where we apply 5 to 3

* Want to compute the value of root (0)

The Analysis

* We use a component parametrized by value

.comp DataFlow<Value> {..}

* Have three rules
// the value of a variable is the value bound to it in an application
var(n,v) :- app(,f,a), ctrl.term(f,1), abs(l,n,), term(a,v).
// the value of a variable is the value assigned to it
term(i,v) :- var(i,n), _var(n,v).
// the value of an app is the value of the body of the targeted abs
term(i,v) :- app(i,f,), ctrl.term(f,1), abs(l, ,b), term(b,v).

* Instantiate for each value analysis

.init bool = DataFlow<Bool>bool.term(i,v) :- bool 1lit(i,v).

e Start the analysis

bool res(v) :- root(i), bool.term(i,v).

Example?

let fst = \x. \y . xin
letid =\x.xin
fst (id 4) (id 5)

* Notice the impression
 Why?

* Home work for the keen:
* Change the analysis to be precise for example 2

Current Work on Soufflé

 Soufflé in the Cloud
* How to distribute Datalog programs in the Cloud

* Provenance
e Explaining results; online debugging

* Query Scheduling

* Improving scheduling performance

* Benchmark Suite
* For Souffle, Z3, bddbddb, Logicblox

Future Work

* More data-types
* Boolean data-type
* Floats/doubles missing
* Integers of various length

 Function Predicates
* |In-build Assertions

* A long wish-list
* Refactoring
* Documentations

Join the Community

* New research projects
* plenty of ideas — not enough personpower

* Feature Extensions
* Refactoring

* Bug Fixing

* Documentation

* Soufflé on github
 http://github.com/souffle-lang/souffle

Appendix

C++ Interface / Integration into other Tools

* Souffle produces a C++ class from a Datalog program
* C++ class is a program on its own right
* Can be integrated in own projects seamlessly

* Interfaces for
* Populating EDB relations
* Running the evaluation
* Querying the output tables

e Use of iterators for accessing tuples
* Examples: souffle/tests/interfaces/ of repo

Example: C++ Interface

* Example

if(SouffleProgram *prog=ProgramFactory::newlnstance(”mytest")) {
prog->loadAll(”fact-dir”); // or insert via iterator
prog->run();
prog->printAll(); // or print via iterator
delete prog;

C++ Interface: Input Relations

* Insert method for populating data
if(Relation *rel = prog->getRelation(”"myRel")) {

for(auto input : myData) {
tuple t(rel);
t << input[0] << input[1];

rel->insert(t);

C++ Interface: Output Relations

* Access output relation via iterator
if(Relation *rel = prog->getRelation(”myOutRel")) {
for(auto &output : *rel) {
output >> celll >> cell2;
std::cout << celll << "-" << cell2 << "\n":

}

JNI Interface

* Recently designed/implemented by P. Subotic (UCL)

* Create Datalog program via AST objects
* No parsing of source code
* Applications
* implement a DSL in SCALA
e use Datalog as a backend
* Example:
 See souffle/interfaces/examples/Main.scala

