
Program-Rewriting Transformations for
Datalog

ABDUL ZREIKA

SID: 440206640

Supervisor: Dr. Bernhard Scholz

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science (Advanced Mathematics) (Honours)

School of Information Technologies
The University of Sydney

Australia

28 June 2019



Student Plagiarism: Compliance Statement

I certify that:

I have read and understood the University of Sydney Student Plagiarism: Coursework Policy and Pro-

cedure;

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Procedure

can lead to the University commencing proceedings against me for potential student misconduct under

Chapter 8 of the University of Sydney By-Law 1999 (as amended);

This Work is substantially my own, and to the extent that any part of this Work is not my own I have

indicated that it is not my own by Acknowledging the Source of that part or those parts of the Work.

Name: Abdul Zreika

Signature: Date: 06/11/18

ii



Abstract

Datalog is a declarative language that has seen a recent resurgence in various fields of computer

science, including static program analysis, security, and network analysis. The new application domains

of Datalog require the computation of billions of tuples, and so the scalability of modern Datalog pro-

grams is paramount. Datalog is a decidable fragment of logic for which there exist efficient evaluation

strategies. To achieve scalability for very large Datalog instances, however, programmers must provide

“performance hints” to the current generation of Datalog engines. Hints are non-declarative features in

the Datalog code that guide the evaluation of a Datalog engine. For example, a hint can be a reordering

of atoms in a body to suggest a different execution order by rewriting the Datalog code, or an anno-

tation that pre-empts performance decisions made by the Datalog engine. Providing effective hints is

a time-consuming activity for the programmer, and requires a deep understanding of the internals of a

Datalog engine. There is, therefore, the question of whether the next generation of Datalog engines can

find performance hints automatically, making the programmer more productive.

In this thesis, we introduce a series of high-level program-rewriting transformations to exploit per-

formance opportunities in Datalog programs. The transformations generate hints, producing optimised

code that executes faster on a bottom-up Datalog engine. These program-rewriting transformations

work more effectively in concert. To exploit the synergy between the transformations, we introduce

a transformation pipeline to coordinate the effects of each individual transformer. We measured the

performance benefits of individual transformations and the transformer pipeline for synthetic and real-

world benchmarks. Some of the transformations enabled the execution of larger instances, i.e. without

transformations the instance would not terminate its execution. On real-world benchmarks, such as the

Amazon AWS industrial application for network-security analysis, the effect of individual transformers

reduced evaluation time and memory usage by up to 68% and 84% respectively. The synergy of trans-

formers improved performance on real-world industrial benchmarks further, with a 98% reduction in

evaluation time, running up to 57 times faster.
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CHAPTER 1

Introduction

Datalog has seen a recent resurgence in various fields of computer science as a domain-specific logic-

programming language. The ability to represent programs as concise logical specifications makes it

naturally applicable to many classes of problems, such as static program analysis (Smaragdakis and

Bravenboer, 2011; Bravenboer and Smaragdakis, 2009), deductive databases (Minker, 2014), network

analysis (Loo et al., 2005b,a; Abiteboul et al., 2005), and security (Jim, 2001; Marczak et al., 2010).

The declarative nature of Datalog programs allows programmers to focus on the formal specifications of

the problem, rather than the process towards it; that is, what to do, rather than how to do it. The result

is reduced complexities in program development and maintenance, and more natural techniques for

program verification. Datalog becomes a tool of choice for rapid-prototyping and the concise description

of problems.

The reluctance to accept Datalog as a mainstream industrial tool in the past stemmed from its initial

inability to perform to the same standards as manually developed tools (Scholz et al., 2016). Several

application domains appropriate for Datalog, such as program analysis, typically involve the computa-

tion of billions of tuples (Antoniadis et al., 2017). The problem of scalability and efficiency is tied to

the evaluation strategies of logical programs. Due to the inherently imperative nature of current com-

putational technology, Datalog engines must transform these declarative programs into an equivalent

imperative form through the use of evaluation strategies. Typical evaluation strategies either evaluate

a goal query from the facts to the goal, known as bottom-up evaluation, or from the goal to the facts,

known as top-down evaluation (Abiteboul et al., 1995). Alongside choosing the basic strategy for evalu-

ation, there are several decisions to be made by a Datalog engine which will determine the performance

of a program.

1



1 INTRODUCTION 2

The evaluation strategy and its concrete implementation therefore directly impact the scalability of Dat-

alog programs. In general, the current generation of Datalog engines have suboptimal evaluation strate-

gies. The strategies are too generic, and cannot harvest the optimisation potential of a Datalog program

automatically. To fine-tune the evaluation strategy for a given Datalog program, programmers provide

“performance hints” to the Datalog engine.

A hint is a non-declarative feature of the logic program that guides the evaluation process of the un-

derlying engine for a given program. Hints can be manual annotations by the programmer to pre-empt

performance decisions. Alternatively, a hint could be a rewriting of the Datalog program into a new se-

mantically equivalent form that performs better on the engine, due to a differing imperative translation.

By writing a Datalog program in a particular way, the underlying engine can evaluate a program more

optimally using these hints without altering program output. Note that, although two Datalog programs

can be identical in what they represent, evaluation performance could vary dramatically (Sereni et al.,

2008; Ullman, 1989; Tekle and Liu, 2011).

In the world of declarative programming, providing hints to find a more suitable evaluation strategy is a

detriment to the actual goal of being “declarative”. The programmer should be shielded from the burden

of imperative programming, including performance considerations in evaluation. However, the current

generation of Datalog engines, such as SOUFFLÉ (Jordan et al., 2016), LogicBlox (Aref et al., 2015),

and bddbddb (Whaley, 2006), require hints to meet the scalability demands of real-world applications.

They all employ a wide range of highly-efficient data-structures and fine-tuned bottom-up evaluation

strategies to effectively evaluate Datalog programs. Neverthless, they can only compete with state-of-

the-art hand-written tools if hints are provided (Bancilhon et al., 1985; Jordan et al., 2016; Tekle and

Liu, 2011; Sagiv, 1988; Balbin et al., 1991).

Unfortunately, providing hints that improve performance can be a very time-consuming task for pro-

grammers, and requires a deep understanding of the internals of the Datalog engine in question. Imple-

menting Datalog program transformations that generate these hints for the backend evaluation system

therefore has significant potential for the next generation of Datalog engines.

In this thesis, we introduce a series of high-level program-rewriting transformations to exploit perfor-

mance opportunities in Datalog programs. The aim of these transformations is to make user hints su-

perfluous, i.e., the transformations find hints to improve the evaluation strategy fully automatically. The
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transformations were implemented in the open-source SOUFFLÉ Datalog engine (soufflé, 2018). SOUF-

FLÉ is a high-performing state-of-the-art bottom-up Datalog engine implementing low-level techniques

in the backend to far exceed the scalability and efficiency of other existing translators (Scholz et al.,

2016; Jordan et al., 2016). Despite its capabilities, a major limitation of SOUFFLÉ is that it does not

provide automated rewriting transformations to adapt the evaluation strategy for a given input program.

The program-rewriting transformations can often also have complementary effects (Ullman, 1989). One

transformation can reveal an optimisation potential that can be used by subsequent transformations.

To coordinate the synergy between the program-rewriting transformations, we introduce a configurable

transformation pipeline. We conduct a wide range of experiments, including on industrial-strength ap-

plications deployed in industry, such as AWS. In our experiments, we show the performance benefits of

the individual transformations on both synthesised and real-world benchmarks, especially when working

in concert, dealing with relations containing billions of tuples. With the new set of transformations, we

reduce the reliance on programmer-provided hints to obtain scalability.

The work we present is unique, as program-rewriting techniques for logic programs have rarely been

studied, bar standard rewriting transformations (Bancilhon et al., 1985) mainly aimed at using Data-

log as a database query language. The work on transformer interactions is particularly limited. We

present a new class of rewriting transformations, particularly useful for the new application domains of

Datalog programs, including security, network analysis, and static program analysis. These domains

exhibit programs with hundreds of relations and rules, and go beyond the classical use-case of Datalog

programming.

1.1 Contributions

In this thesis, we present the following contributions:

• We develop a series of high-level program-rewriting transformations.

– InlineRelations: Relations can be chosen to be inlined by the user, reducing the

overhead of constructing intermediate non-output relations.

– ReduceExistentials: Existential relations are transformed into propositional, non-

recursive counterparts.
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– ReplaceSingletonVariables: Singleton variables are replaced with unnamed vari-

ables to indicate to the engine that an existential check suffices, rather than the typical full

relation scan.

– PartitionBodyLiterals: Disconnected components in clauses can be extracted

out into separate propositional relations.

– ReorderLiterals: Literals in rule bodies can be reordered based on a given heuristic.

– MinimiseProgram: Redundant clauses semantically equivalent to other existing clauses

in the program are identified and removed.

• We develop a theoretically justified transformation pipeline, based on transformer dependen-

cies.

• We implement the transformations and the pipeline concept into the existing SOUFFLÉ Datalog

engine.

• We conduct a range of experiments on large-scale programs, including both synthesised and

real-world benchmarks, to evaluate the impact of the transformers individually and in concert.

Our rewriting transformations have a direct impact on real-world benchmarks. In particular, we eval-

uated our contributions on an industrial application used by Amazon to check the security properties

of AWS software-defined networks. Our transformations obtain a speedup of 57x (98%), reducing the

runtime from 285 seconds to just 5 seconds.

1.2 Organisation

We begin in Chapter 2, with some background information and a review of existing related work. Chap-

ter 3 introduces each developed program-rewriting transformation. Each transformation is motivated,

and includes an algorithm, necessary transformation conditions, and an outline of its implementation in

SOUFFLÉ. In Chapter 4, we develop a new pipeline transformation framework. The framework is used

to develop a transformation pipeline for SOUFFLÉ by analysing transformer dependencies. In Chapter

5, we conduct a range of experiments to test the effectiveness of our contributions on synthesised and

real-world benchmarks, and discuss the results. We discuss future work in Chapter 6, and conclude in

Chapter 7.



CHAPTER 2

Background and Literature Review

In this chapter, we provide an overview of the Datalog language and existing work in the area of Datalog

program optimisations. We begin with an introduction to Datalog syntax and semantics, followed by

popular techniques for program evaluation. We then review current work in the field of Datalog op-

timisations, discussing both high-level program-rewriting strategies and backend evaluation strategies.

We conclude with a brief description of SOUFFLÉ: a state-of-the-art Datalog evaluation engine with a

high-performing backend, but a poor framework for program-rewriting optimisations.

2.1 Datalog as a Fragment of Logic

2.1.1 Datalog Syntax and Semantics

Datalog is a domain-specific decidable fragment of logic. It is syntactically a subset of the general-

purpose logic programming language, Prolog. As with Prolog, Datalog programs are expressed as a set

of statements, called rules. Each rule is a Horn clause, written in the form:

p0(x01 , x02 , . . . , x0k0 ) p1(x11 , x12 , . . . , x1k1 ), . . . , pn(xn1 , xn2 , . . . , xnkn
).

Each symbol pi represents a predicate (or, in database terms, a relation) with arity ki. An atom is a

predicate pi supplied with ki arguments, called terms. Terms are comprised of constants and variables.

The head of a rule is the atom p0(x01 , x02 , . . . , x0k0 ) appearing on the left hand side of the arrow. For

notational brevity, we will use a(~x) to represent an atom a(x1, . . . , xn) with its arguments. An atom is

grounded if none of its terms contains variables.

In terms of semantics, an atom pi(xi1 , xi2 , . . . , xiki ) is said to be true if the tuple (xi1 , xi2 , . . . , xiki )

exists in the relation pi. If all atoms in the body of a rule are true for a given assignment of variables,

5
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then the atom in the head of the rule must also be assigned a true value for that assignment. In the case

that the body is empty, the head of the rule is immediately true, and we call it a fact in the database. The

set of all facts is called the extensional database (EDB), and the complement is called the intensional

database (IDB).

Datalog usually also allows atoms to be negated. A concrete semantic definition for negation is difficult

(Greco and Molinaro, 2015). Datalog typically operates under the Closed-World Assumption: all things

that are true in the universe can be proven to be true by the supplied database; that is, the input database

is complete. Intuitively, ¬p(X) is therefore said to be true if and only if we cannot prove p(X) to be

true with the given IDB and EDB. A literal refers to any atom or its negation.

For any given Datalog program, we can supply a query of the form  p, which outputs all tuples

X = (x1, . . . , xk) where p(X) is true given a set of IDB and EDB relations. Computation in a Datalog

program is the discovery of the minimal set of tuples for a given query such that all rules in the program

hold.

2.1.2 Datalog Restrictions

The primary purpose of Datalog programming over Prolog is the guaranteed termination of programs

when operating over a finite universe. To provide this, certain semantic restrictions must be imposed on

the Datalog program that guarantee decidability, at the cost of expressiveness.

The most fundamental semantic restriction is that all variables in the head atom must appear in some

body atom. This means that all tuples proven have only constant terms; they are independent of any

variables in the program. The Datalog program can then be evaluated using a simple fixpoint procedure,

based on the concept of bottom-up evaluation discussed in the next section. Essentially, starting with

the set of facts, all rules are applied repeatedly until no new tuples can be derived.

Pure Datalog is the most restricted form of Datalog programming, whereby all atoms must be positive,

and all terms are strictly either constants or variables. Since all terms are constants or variables, no new

constants can be introduced outside of those already present in the EDB, and so only a finite number

of assignments are possible. As a result, all queries are guaranteed to terminate. In fact, pure Datalog

programs run in polynomial time (McAllester, 1999).
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In many applications, allowing more complex terms through the use of functors is necessary. Functors

are functions of a fixed arity k that take in k elements from the universe and return a single element. For

example, the addition operator + is a binary functor over the universe of real numbers. Some problems,

such as computing the sum of weights along a path in a weighted directed acyclic graph, require functors

to be expressed. Most Datalog implementations hence extend pure Datalog with a notion of built-in

functors. To preserve the fixpoint evaluation strategy, all variables appearing in functors must also

appear functorless in some body atom. Complex terms are then only evaluated after all constituent

variables have been bound by their functorless appearance (Greco and Molinaro, 2015; Abiteboul et al.,

1995). Due to the violation of the finite universe assumption, however, adding functors shifts Datalog

programs from the decidable world into undecidability, as unrestricted constants may be generated from

functors.

Finally, many logical statements can only be expressed using the concept of negation. As stated previ-

ously, ¬p(X) is defined to be true if and only if we cannot prove p(X) to be true with the given IDB

and EDB. To enact this semantic meaning in practice, whilst also maintaining the termination guaran-

tee and fixpoint evaluation, we restrict negation such that our program can be stratified. A program is

stratified if the dependency graph between predicates does not contain a negative cycle. That is, there

cannot be a sequence of predicates (p1, p2, . . . , pn, p1) such that pi+1 appears negated in a rule of pi. If

a program can be stratified, then we can divide the program into a sequence of strata (S1, . . . , Sn) such

that all predicates p appearing negated in some rule in stratum Si have already been fully computed in a

previous stratum. Thus, we can compute the fixpoint of each stratum in sequence, piping in the results

of the previous stratum as facts into the next. Although a single program can admit many stratifications,

the resulting fixpoint is independent of the choice in strata (Greco and Molinaro, 2015; Abiteboul et al.,

1995).

Checking whether the negation of a grounded atom is true can always be performed with a simple lookup

in stratified programs, as the associated relation must have been fully computed in a previous stratum. By

restricting negation further, such that all variables appearing in negated atoms also appear in a positive

atom in the rule, we can treat negation as a constraint: once the variables in the negated atom are bound

to a value, the now grounded negated atom can be checked.

Datalog with negation semantics is called normal Datalog. When discussing Datalog throughout, we

assume the semantics of normal Datalog with functors, unless otherwise specified.
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The code shown in Listing 2.1 is an example of a program written in Datalog that outputs all edges in

the transitive closure of a directed graph with a given set of edges. Note that the arrow, , is dropped

when the body of a rule is empty. A rule with no head atom indicates the relation we wish to query.

LISTING 2.1. Transitive closure in Datalog

1 edge(1,2).

2 edge(1,4).

3 edge(2,3).

4

5 transitive_closure(x,y)  edge(x,y).

6 transitive_closure(x,y)  edge(x,z), transitive_closure(z,y).

7

8  transitive_closure

2.2 Datalog Evaluation

As computers in the real-world are inherently procedural, Datalog programs must be translated into an

imperative style to be evaluated. There are several techniques devised for the imperative evaluation of

Datalog programs, typically classified as either top-down or bottom-up evaluation strategies.

2.2.1 Bottom-Up Evaluation

Bottom-up evaluation strategies begin from the set of facts and work towards the query.

The most basic form of bottom-up evaluation is an iterative fixpoint procedure, termed naïve evaluation

(Bancilhon and Ramakrishnan, 1988). The idea is to start with an empty database, and repeatedly apply

all rules until no new tuples can be generated. The procedure is summarised in Algorithm 1.
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Algorithm 1 Naïve evaluation of a Datalog program
1: procedure EVALUATEDATALOGPROGRAM(EDB, IDB)
2: database ;
3: �  EDB

4: while � 6= ; do
5: database database [ �

6: �  ;
7: for each rule r 2 IDB do
8: derivedTuples APPLYRULE(r,database)
9: newTuples derivedTuples \ database

10: �  � [ newTuples

11: return database

The derived fixpoint is unique and correct (Greco and Molinaro, 2015; Liu and Stoller, 2009). Naïve

evaluation is the most widely used and described Datalog evaluation strategy (Bancilhon and Ramakr-

ishnan, 1988) due to the ease of implementation and the natural mapping from the declarative program.

The iterative non-goal-oriented nature of naïve evaluation means we are likely to constantly produce

irrelevant facts that do not contribute to the given query (Bancilhon et al., 1985). In particular, relations

are always fully computed, even if only a small subset is used, and duplicate tuples are likely to be

generated.

2.2.2 Top-Down Evaluation

Top-down evaluation strategies are a goal-directed alternative to bottom-up strategies, where evaluation

begins from the query and works towards the facts instead. The idea is that the query can only be true

when all atoms in the body can be satisfied. Each atom a in the body can in turn only be true when all

atoms in the body of at least one rule of a can be satisfied. For a given body atom, we can hence try

out a rule by substituting in its body. When substituting, we may be forced to bind certain variables to

each other or to constants. The substitution process is called unification. We continuously expand and

unify the body literals in this manner until we reach an EDB fact, of when unification is impossible. If a

particular path fails, we backtrack and try another rule substitution, until all rule possibilities have been

tested.

Prolog uses a top-down evaluation strategy called SLD resolution. SLD resolution defines a mechanical

approach to top-down evaluation: atoms in queries are expanded left to right, choosing the next rule to

substitute from top to bottom, based on the source code.
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Although (functorless) Datalog programs always admit a finite minimal model (Greco and Molinaro,

2015; Abiteboul et al., 1995), top-down evaluation methods are not guaranteed to terminate (Bancilhon

et al., 1985). Moreover, top-down evaluation strategies tend to repeatedly generate the same result when

expanding body atoms. The need for recomputation can be mitigated through tabling techniques, such

as variant or subsumptive tabling, where the truth values of certain forms of atoms are stored and reused

(Bancilhon et al., 1985; Chen and Warren, 1996; Tekle and Liu, 2011).

2.2.3 Bottom-Up vs. Top-Down

Top-down evaluation strategies avoid the computation of irrelevant tuples inherent to bottom-up meth-

ods. By deriving cost-functions based on different variants of top-down and bottom-up strategies on

several simple Datalog programs, it has been shown that neither evaluation strategy class is superior to

the other in all cases (Bancilhon and Ramakrishnan, 1988).

Interestingly, however, all Datalog programs P can be rewritten into a semantically equivalent form P
0

such that evaluating P
0 using semi-naïve evaluation, discussed in the next section, is always better than

or equal to evaluating P top-down when considering the number of rule firings (Ullman, 1989). Bottom-

up strategies can therefore always trump top-down methods, provided that the original program is first

translated appropriately. Unless explicitly stated, we assume a bottom-up strategy when discussing

Datalog evaluation engines.

2.3 Optimising Program Evaluation

The development of a Datalog engine scalable and efficient enough to meet the demands of industrial

applications has often been met with skepticism (Scholz et al., 2016; Neuhold et al., 1988; Ceri et al.,

1989). In particular, an unsophisticated approach to program evaluation does not lend promising results,

especially when compared with tools developed in other languages (Scholz et al., 2016). The most

important optimisations to meet this baseline lie in the use of effective evaluation strategies, and the

development of program transformations that rewrite the original Datalog code into a more imperatively

efficient form.
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2.3.1 Evaluation Strategies

As discussed in the previous section, the evaluation strategy used can have a significant impact on

program efficiency, and even termination. The choice of an appropriate evaluation strategy is hence

critical in the development of a Datalog engine fit for more general use.

Bottom-up evaluation can be optimised in practice by using incrementally maintained variables to repre-

sent the current environment, without computing expensive set relations (Liu and Stoller, 2009). More-

over, several efficient data-structures specialised for fixpoint computations have been developed in the

past (Jordan et al., 2016; Liu and Stoller, 2009).

The naïve approach shown in Algorithm 1 can also be extended to reduce the number of duplicate tuples

generated (Bancilhon and Ramakrishnan, 1988). The idea is based on the fact that, in each iteration, at

least one newly-generated tuple from the previous level must be used. The resulting new approach is

called semi-naïve evaluation. Using semi-naïve evaluation for general Datalog programs is only a recent

advancement, but has shown very promising results in practice (Scholz et al., 2016; Ramakrishnan et al.,

1994; Whaley et al., 2005).

Although the choice of evaluation strategy plays a significant role in program optimisation, previ-

ous work showing the superiority of bottom-up evaluation strategies given ‘sufficiently good’ program

rewrites indicates that program-rewriting transformations may be a more valuable avenue in maximising

evaluation efficiency.

2.3.2 Program-Rewriting Strategies

Program-rewriting optimisations involve reformulating a given Datalog program in a semantically equiv-

alent manner to provide hints to the backend evaluation system, based on an analysis of the program.

Here, semantic equivalence means the output of the new program is identical to the output of the orig-

inal. That is, the tuples in query relations must remain unchanged, while intermediate computations

may differ. Existing program-rewriting transformations typically operate on Datalog programs with

restrictions.
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2.3.2.1 The Magic-Set Transformation

The most well-studied program-rewriting transformation is the Magic-Set Transformation (MST). Re-

call that the main issue with bottom-up evaluation strategies was the generation of irrelevant tuples

(Bancilhon et al., 1985). The issue is seemingly inherent to bottom-up methods due to the non-goal-

oriented nature of the technique. The MST aims to reduce wasted computations through complex rule

specialisations.

The initial MST technique was devised only for pure Datalog programs (Bancilhon et al., 1985). The

analysis stage involved discovering the information flow between variables in each individual rule. As

Datalog programs are declarative, and information flow is a strictly imperative concept, the ordering

of atom execution in each rule is made deterministic through a Sideways Information Passing Strategy

(SIPS). The SIPS is a heuristic used to determine which atom should be chosen next, typically based on

a boundness analysis. An adornment is calculated for each atom in each rule, representing which of its

arguments are bound to a value at execution time. Based on these adornments, we can predict at compile-

time a restricted set of values that a variable can take. Consequently, we can add specialising predicates

to the start of each rule that enable this restriction. The result is likely fewer irrelevant computations

per rule. The work was later extended to work on functorless normal Datalog programs (Balbin et al.,

1991).

The effectiveness of the MST in practice is debated (Ullman, 1989; Sereni et al., 2008; Bancilhon et al.,

1985; Tekle and Liu, 2011). In his paper on bottom-up evaluation, Ullman (Ullman, 1989) shows an

example of a program performing poorly after the MST is applied. Bancilhon and Ramakrishnan (Ban-

cilhon and Ramakrishnan, 1988) show analytically that the performance of the MST varies even with

simple programs. Sereni et al. (Sereni et al., 2008) finally experimentally showed that, although program

evaluation can be significantly faster when the MST is applied, there are cases where speed degrades

drastically. The authors ran 111 standard Datalog programs with and without MST, and showed that,

while approximately 30% had up to a 4x increase in speed, 10% were more than 3x slower.

The SIPS should be chosen in such a way that each successive body maximises the cut down of tuples to

consider. Two natural approaches are to always execute the maximally bound atom (Balbin et al., 1991)

or to always execute the atom for which the predicted relation size is minimal (Sereni et al., 2008). The

latter is significantly more complex to implement, though it has been shown to improve evaluation time

in many cases (Sereni et al., 2008).
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2.3.2.2 Program Minimisation

The presence of redundant clauses and atoms in Datalog programs can also lead to unnecessary recom-

putations. For a Datalog program P , program minimisation removes these redundancies by returning the

minimal equivalent subset P 0 of P . Unfortunately, checking the general equivalence of two programs

is undecidable (Sagiv, 1988), due to the undecidability of general clausal equivalence (Shmueli, 1993;

Ramakrishnan et al., 1988). Uniform equivalence is a stronger form of equivalence, where IDB relations

can be given input facts. Uniform equivalence is a decidable property for functorless Datalog (Sagiv,

1988). Uniform equivalence can be tested by running a simpler Datalog program with a particular set of

inputs (Sagiv, 1988). Unfortunately, the process cannot be immediately extended to work with functors.

2.3.2.3 Existential Queries

In some Datalog programs, certain arguments of a relation may only be used existentially. For exam-

ple, consider the following snippet of a Datalog program, assuming that b and c have been previously

defined:

1 a(x,y)  b(x,z), c(z,y).

2 query(x)  a(x,y).

3  query.

Clearly, the value of the variable y on line 2 does not matter, as it is not used elsewhere. We call

a variable that appears a single time in a rule a singleton. Singleton variables can be represented by

unnamed variables in Datalog, typically written as underscores ‘_’. Assuming that the relation a is not

used elsewhere, not all possible values for the second argument need to be computed; we only want to

know if any such value exists, given a fixed first argument x. A paper by (Ramakrishnan et al., 1988)

rewrites such programs more optimally by first adorning rules, and then deducing which arguments can

be deleted. The adornment process is similar to that in the magic-set transformation earlier, except

based on existential arguments, rather than boundness. The removal of arguments may cause clauses to

become equivalent. The authors use uniform equivalence in an attempt to minimise the program, while

noting that minimising under general equivalence is undecidable. The importance of an interaction

between transformers is therefore implied. The paper also briefly discusses removing disconnected

literals in clauses into a single separate propositional relation to simulate the cut operator in Prolog. No

experimental justification is given for the discussed transformations, however.
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2.3.2.4 Other Techniques

Other techniques for program-rewriting optimisations have been researched to a much lesser degree.

The most commonly discussed alternative optimisation, called counting, is in fact based on the MST

itself (Bancilhon et al., 1985). The counting method applies to the very restricted class of Datalog

programs containing only linear acyclic relations. The restriction offers further avenues for minimising

the number of generated tuples. A complexity analysis shows that the counting method can be superior

to the MST in some cases.

The remaining literature on optimisations is very limited. In particular, there are several undiscussed

program-rewriting optimisations that can be derived from typical imperative approaches to optimised

compiler development. For example, constant propagation, statement reordering, and relation inlining

all seem to be promising optimisations that have not yet been considered.

2.3.2.5 Multi-Optimisational Systems

Many papers discuss the impacts of individual optimisations relative to each other, both mathematically

(Bancilhon et al., 1985; McAllester, 1999; Liu and Stoller, 2009) and empirically (Jordan et al., 2016;

Sereni et al., 2008; Antoniadis et al., 2017). Conversely, there has been very limited work comparing

their impacts when run together or in sequence (Ceri et al., 1989). Ullman (Ullman, 1989) discovers the

effectiveness of bottom-up evaluation only through a composition of multiple transformations, and so

this largely untapped field is promising.

2.4 SOUFFLÉ

SOUFFLÉ is a modern open-source Datalog engine primarily designed for large-scale applications (Scholz

et al., 2016). The intricate low-level optimisation techniques used in the backend evaluation strategy al-

low SOUFFLÉ to far exceed the scalability and performance of other existing translators (Scholz et al.,

2016; Jordan et al., 2016; Antoniadis et al., 2017), such as bddbddb (Whaley, 2006) and µZ (Hoder

et al., 2011). In fact, SOUFFLÉ achieves results on par with manually developed tools (Jordan et al.,

2016). Nevertheless, the lack of non-trivial program-rewriting optimisations, which have been shown to

have enormous impacts on program efficiency, means there are several untapped avenues for optimisa-

tion. SOUFFLÉ hence serves as a suitable vehicle for understanding and extending such optimisations,
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and analysing their impacts on the performance of Datalog systems, especially for large-scale real-world

applications.

2.4.1 SOUFFLÉ Syntax

SOUFFLÉ is an extension of normal Datalog with functors. Predicate arguments are typed as either

symbol (a string) or number. SOUFFLÉ also allows the use of aggregators, components, and records to

improve expressiveness. To limit our scope and maintain the applicability of our transformers to general

Datalog, we omit further discussion of such constructs. In SOUFFLÉ, predicates must be declared.

Output and input relations can be specified with a declarative. Listing 2.2 shows an implementation of

the transitive closure Datalog example from Listing 2.1 in SOUFFLÉ.

LISTING 2.2. Transitive closure in SOUFFLÉ

1 .decl edge(x:number, y:number)

2 .input edge(filename="edge.facts")

3 edge(1,2).

4 edge(1,4).

5 edge(2,3).

6

7 .decl transitive_closure(x:number, y:number)

8 transitive_closure(x,y) :- edge(x,y).

9 transitive_closure(x,y) :- edge(x,z), transitive_closure(z,y).

10

11 .output transitive_closure

The .decl keyword declares a new predicate, assigning each argument a type. The .output declar-

ative is used to specify one or more query relations, the contents of which will be the output of the pro-

gram. The .input declarative reads in facts from a fact file, in this case specified to be "edge.facts".

SOUFFLÉ also offers notation for disjunctions, through the use of a semicolon (;). For example, the rule:

1 a(x) :- (b(x),c(x)) ; (d(x),e(x)).

is equivalent to:

1 a(x) :- b(x), c(x).
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2 a(x) :- d(x), e(x).

Note that disjunctions are only syntactic sugar, and are handled entirely by the parser.

2.4.2 SOUFFLÉ Evaluation

To evaluate an input Datalog program, SOUFFLÉ uses the compilation pipeline shown in Figure 2.1

(Scholz et al., 2016). SOUFFLÉ uses semi-naïve evaluation as the backend evaluation strategy.
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FIGURE 2.1. SOUFFLÉ compilation pipeline

As is the norm with compilers, the Datalog program is fed into the parser, which translates it into an

Abstract Syntax Tree (AST). The AST format is a very high-level representation of the input program,

and can be thought of as identical to the Datalog language, but easier to manipulate. Once the AST

level is reached, SOUFFLÉ performs some basic high-level program-rewriting optimisations, discussed

in detail in Chapter 4. These optimisations are an AST-to-AST function, and the result remains a valid

Datalog program. The AST is then fed into a translator to convert it into Relational Algebra Machine

(RAM) code. RAM code is a very high-level imperative language, mostly comprised of nested loops.

For example, consider the following Datalog rule in SOUFFLÉ:

1 a(x,y) :- b(x,z), c(z,y), d(z).

The rule will be converted into the following nested for loops, called a loop chunk, by the AST-to-RAM

translator, as part of the bottom-up evaluation process:

1 FOR EACH TUPLE (x,z) IN RELATION b:

2 FOR EACH TUPLE (z,y) IN RELATION c:

3 IF (z) IN RELATION d:

4 ADD (x,y) TO RELATION a
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The correspondence is straightforward. The Datalog rule tells us that, if (x,z) 2 b, (z,y) 2 c, and

(z) 2 d for any values of x, y, and z, then (x,y) 2 a as well. The RAM code emulates this check

imperatively. We begin by scanning every tuple in b to ground variables x and z to instantiated values.

We then ground the value of y by checking for all tuples in c with the instantiated value of z as the first

argument. Finally, since z is already grounded to a value, we can just check if it exists in d, and we are

done.

Notice that such a computation of a depends on the relations b, c, and d already being computed, so

that tuple existence can be checked. SOUFFLÉ generates a precedence graph for each input program to

determine the order of computation when translated to RAM code. The precedence graph encodes the

dependencies between relations. In the event of mutual recursion, SOUFFLÉ condenses the strongly-

connected subgraphs in the precedence graph into single nodes to form the Strongly-Connected Com-

ponent (SCC) graph. As all strongly-connected components are condensed, the SCC graph contains no

cycles, and so provides a strict topological ordering of the nodes. All relations in the same node in the

SCC graph are computed simultaneously until a fixpoint is reached, before moving onto the next node

in the topological order. For example, consider the following Datalog code written in SOUFFLÉ:

1 .decl a(x:number)

2 a(0).

3 a(x) :- c(x), c(x+1).

4

5 .decl b(x:number,y:number)

6 b(x,y) :- a(x), a(y).

7

8 .decl c(x:number)

9 c(x) :- b(x,x).

10

11 .decl d(x:number)

12 d(x) :- c(x), a(x).

13

14 .decl e(x:number, y:number)

15 e(x,y) :- c(x), d(y).

16

17 .output e
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The precedence graph is shown in Figure 2.2, while the corresponding SCC graph is shown in Figure

2.3.

FIGURE 2.2. Precedence graph corresponding to the example program

FIGURE 2.3. SCC graph corresponding to precedence graph in Figure 2.2

As this thesis is primarily on high-level program-rewriting transformations, our focus will be on the

AST level of the compilation pipeline. The effectiveness of such transformations typically relies on the

imperative code produced, so we will sometimes venture into the sphere of RAM code to motivate AST

optimisations.



CHAPTER 3

Transformations

In this chapter, we devise a series of program-rewriting transformations aimed at improving the perfor-

mance of Datalog programs. For each transformation, we motivate its existence and present an algorithm

for applying it on a generic implementation of the Datalog language. The necessary pre-conditions on

the input program for the transformation algorithm to be valid are detailed. We also briefly discuss our

implementation in the aforementioned Datalog engine, SOUFFLÉ.

3.1 InlineRelations: Inlining

The idea of inlining functions is exceptionally common in modern programming languages, relied upon

heavily by compilers both declarative and imperative (Chang and Hwu, 1989; Ayers et al., 1997). The

idea is to expand function applications directly when they appear in the source code in an attempt at

reducing function overhead. Expanding a function call in such languages typically results in less time

and memory being used to copy arguments and manipulate the registers and stack. Moreover, the inlining

process may present new avenues for optimisation in the context of the calling code, due to additional

constraints imposed by the surrounding source code. Such optimisations include improved register

allocation, code compaction, common subexpression elimination, and constant propagation (Chang and

Hwu, 1989).

The concept of inlining has a natural counterpart in the logic-programming universe. The overhead gen-

erated by fully precomputing all tuples in a relation can be mitigated by instead replacing the ‘calls’ to

the relation with the rules that define it. Whenever a lookup of the relation is performed, the evaluation

engine now checks the body of each rule defined for the relation on the fly instead. The effect is similar

to one iteration of a top-down evaluation strategy, where queries are replaced with equivalent subgoals.

The benefit is that the appearance of the relation is likely constrained, and so not all tuples in the re-

lation are actually relevant. Conversely, evaluating tuple-containment on the fly can lead to repeated

19
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computations if the same lookup is performed several times. Similar to other programming languages,

however, inlining here can significantly reduce unnecessary overhead, while also possibly introducing

new opportunities for later optimisations, such as the elimination of repeated body atoms.

Despite the potentials of such an optimisation, inlining has not yet been researched from a logic-

programming perspective. Here, we introduce a high-level program-rewriting transformation for in-

lining, and the conditions necessary for it to occur. As with several popular languages, such as C, a

new inline keyword was added to SOUFFLÉ, which can be used by programmers as a hint to the

compiler that certain relations should be inlined using the transformative procedure. The inlining fea-

ture is hence a semi-automated transformation driven by manual annotations. Data from previous runs,

analyses of program structure, and domain-dependent programmer intuition can all provide insights into

when on-the-fly evaluation is more appropriate than a full precomputation of the relation.

3.1.1 Motivation

Consider the following Datalog program P :

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1)  natural(x), x < N.

4

5 .decl natural_pair(x:number, y:number)

6 natural_pair(x,y)  natural(x), natural(y).

7

8 .decl query(x:number, y:number)

9 query(x,y)  natural_pair(x,y), y = x * x.

10

11 .output query

The program P outputs all pairs of natural numbers (x, x2) for x  N , where N is some predefined

variable. The recursive natural relation is a common design pattern for working with number ranges

in Datalog. The sole output relation, query, is dependent on the natural_pair relation, which in

turn is dependent on the natural relation. As no relations in P are mutually recursive, the SCC graph

will look as shown in Figure 3.1.
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FIGURE 3.1. SCC graph corresponding to the example program P

A bottom-up Datalog evaluation engine like SOUFFLÉ will hence begin by precomputing all tuples in

the natural relation, followed by all tuples in the natural_pair, before finally using the result

to evaluate the output. The linearity of the ordering of relation evaluation means an analysis is simple.

Each of the N elements of the natural relation is computed in sequence, resulting in O(N) firings of

its recursive rule. The natural_pair relation consequently generates O(N2) tuples by computing

all pairs (x, y), with x, y 2 natural. Finally, we add a constraint in the query relation to return only

those pairs (x, y) where the second element y is the square of the first. Notice that x2 is unique for each

x 2 natural, and so the constraint results in only O(N) output tuples being produced, despite having

to iterate through all O(N2) elements of natural_pair. There is no way for the evaluation strategy

to anticipate the constraint when computing the natural_pair relation, as each relation is computed

independently in sequence.

Rather than precomputing all tuples in the natural_pair relation, and then filtering out the valid

pairs by applying the constraint, it is beneficial to only generate the tuples as needed, immediately

taking into consideration the constraint. Using this ‘on-the-fly’ evaluation technique, we bypass the

construction of natural_pair. Instead, we iterate through all elements of natural just once, only

forming the pair (x, x2) if x2 2 natural_pair as well. The net result is a generation of only O(N)

tuples in total throughout the entire program, rather than O(N2). Both evaluation time and memory

usage have therefore benefited by skipping the construction of an intermediate relation.

On-the-fly evaluation can be emulated by removing the natural_pair relation, and instead embed-

ding its rule in the query directly. The following program P
0 is produced in this case:

1 .decl natural(x:number)
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2 natural(0).

3 natural(x+1)  natural(x), x < N.

4

5 .decl query(x:number, y:number)

6 query(x,y)  natural(x), natural(y), y = x * x.

7

8 .output query

Since the new conjunction in the query natural(x), natural(y) is true if and only if the original

atom natural_number(x,y) was true, the output of P is identical to that of P 0. The two programs

P and P
0 are therefore semantically equivalent. However, the constraint appearing in the query of the

program P has reduced the number of viable tuples in the natural_pair relation significantly. The

embedding of the rule defining natural_pair directly into the query allows the evaluation mecha-

nism in the backend to benefit as a result.

Thus, computational efforts for some non-query relations can be reduced by determining tuple contain-

ment on the fly, instead of forcing a full precomputation of all tuples. In particular, the computation

of large relations where only a small portion of the result is used in later parts of the program, such as

natural_pair in the above example, can be heavily dominated by the overhead of discovering and

storing all tuples, rather than its use, in terms of both time and memory consumption.

Notice that, by replacing the appearances of a literal with the bodies of its associated rules to check

the truth value, rather than precomputing the full relation, inlining in Datalog essentially emulates one

iteration of a top-down evaluation strategy. With top-down evaluation, such as the SLD resolution

technique used by Prolog, body literals in the query are iteratively replaced with equivalent subgoals

until a true or false value can be guaranteed.

It is important to note that the inlining technique may not apply in certain cases, stated and explained

in the conditions section below. Moreover, applying inlining may mean that some computations are re-

peated, since the tuple containment ~y 2 R may need to be checked multiple times through the program.

Nevertheless, many programs can largely benefit, such as the program P discussed above, as the num-

ber of tuple repetitions encountered may be insignificant when compared to the overhead of full relation

computation. In general, inlining is most appropriate when used for large relations where it is not bene-

ficial to compute and cache all tuples beforehand, such as when dependent relations impose sufficiently
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strong constraints. Relations containing only a small number of rules, and with few appearances in other

rules, are also more ideal for inlining, as a blowup in the number of rules in the program is avoided.

3.1.2 Conditions

Let P be the original program, and I ✓ relations(P ) be the set of relations chosen to be inlined.

For inlining to be possible such that semantic equivalence is maintained, we require some restrictions

on P and I .

Output Relations

Condition 1 : For all R 2 I , R cannot be declared an output relation in P .

Justification: After embedding all appearances of R in P , the original relation R and its rules will

all be deleted. Output relations must be returned at program termination, however, and so cannot be

deleted. Moreover, the purpose of inlining is to avoid the complete computation of the given relation in

a program. Inlining output relations is hence nonsensical, as all tuples must be discovered.

Input Relations

Condition 2 : For all R 2 I , R cannot be declared an input relation in P .

Justification: As R is an input relation, additional facts associated with the relation may be added at

run-time, after all high-level transformations have been performed. To remove all appearances of R in

the program, however, the inlining transformation must be aware of all rules associated with R. Input

relations therefore cannot be inlined.

Recursion

Condition 3 : Suppose G is the precedence graph of the Datalog program P . Let GI be the subset of G

containing only the relations R 2 I . Then, GI cannot contain a cycle.

Justification:

To get an intuition for the issue underlying this condition, consider first the following program P1:

1 .decl a(x:number) inline

2

3 a(x)  b(x), c(x).

4 a(x)  a(x), d(x).
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5

6 query(x)  a(x), e(x).

7

8 .output query

Here, the set of relations to inline is I = {a}. Note that query is not in I , and so all rules where

it appears in the head will remain in the program after the inlining process is complete. However, all

appearances of the relation a must be inlined. Thus, the appearance a(x) in the single rule of the

query relation must be inlined. The process will replace the appearance a(x) with a disjunction of

the two rules for a. This gives us the following program:

1 .decl a(x:number) inline

2

3 a(x)  b(x), c(x).

4 a(x)  a(x), d(x).

5

6 query(x)  ((b(x), c(x)) ; (a(x), d(x))) , e(x).

7

8 .output query

which is expanded out to the form:

1 .decl a(x:number) inline

2

3 a(x)  b(x), c(x).

4 a(x)  a(x), d(x).

5

6 query(x)  b(x), c(x), e(x).

7 query(x)  a(x), d(x), e(x).

8

9 .output query

Since the relation a is directly recursive, it reappears in the query rule after inlining. The new appearance

must also be removed, requiring another step of inlining. The relation a will again reappear in a query
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rule due to the recursive nature of a, compelling a further round of inlining, and so on. The program-

rewriting process to produce the inlined program will hence never terminate. Figure 3.2 shows the first

few steps of the inlining procedure on the rewriting of the query rule. The right-most branch will grow

indefinitely.

  

  

  

...
 

FIGURE 3.2. Inlining process when inlining the recursive relation a in query in program P1

The problem also emerges in the more general case, where we have a cycle C = (a1, ..., an) in the

dependency graph of P , where all the relations ai in C are chosen to be inlined. That is, a2 uses a1 in at

least one of its rules, a3 uses a2, and so on. As C is a cycle, a1 will also use an in at least one of its rules.

Now, suppose ai appears in some non-inlined relation R. As ai must be inlined, the appearance of ai

will be replaced with the bodies of its rules, as performed above. ai uses ai�1 in at least one of its rules,

however, and so ai�1 will now appear in a rule of R. ai�1 itself must be inlined, and so the process

repeats, with ai�2 now appearing in one of the rules of R. Ultimately, after n iterations, ai will reappear

in a rule of R, due to the cyclic dependency chain C. The entire process was initiated to eliminate an

occurence of ai, however, and so the process will not terminate.

Program P2 shows an example of the more general case.

1 .decl a(x:number) inline

2 .decl b(x:number) inline

3 .decl c(x:number) inline

4

5 a(x)  b(x).
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6 b(x)  c(x).

7 c(x)  a(x), d(x).

8

9 query(x)  a(x), e(x).

10

11 .output query

Again, the result is an endless sequence of rewriting applications on the query rule, as shown in Figure

3.3.

...
FIGURE 3.3. Inlining process when inlining the recursive set I = {a,b,c} on query
in program P2

Negation

Inlining negated appearances of relations is particularly interesting. Due to stratification requirements,

negation in the Datalog world is rooted in the idea of fully precomputing a relation beforehand, and then

performing a lookup on the resultant table to check the existence of a tuple.

For example, consider the evaluation of a Datalog rule for a relation R containing the body literal ¬a(~x).

The relation a would first have to be fully computed prior to the evaluation of the relation R. Moreover,

all variables in ~x must be grounded, that is, they must appear in some positive body literal in the body of

the same rule. The groundedness property means that the variables in ~x can be instantiated with actual
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values, after which a simple lookup for the resultant tuple can be performed on the already computed

relation a.

As stated earlier, however, inlining replaces full precomputation with on-the-fly evaluation. The form of

rules allowed for negated relations to be inlined is hence limited to those which can be checked as we

go along, forcing the following conditions.

Condition 4 : Suppose P contains a rule r for the relation R such that r introduces a variable in its body

that does not appear in the head. Suppose further that R appears negated in some other rule in P . Then,

R cannot be inlined.

Justification: Consider the fragment of Datalog code below, where I = {a}:

1 a(x)  b(x,y), c(y).

2 d(x)  e(x), ¬a(x).

Inlining a in the rule for d results in the rewrite sequence shown in Figure 3.4.

Inlining 

De Morgan's Law

Distributivity of Conjunction

 
 

FIGURE 3.4. Inlining a negated relation that introduces a new ungrounded variable,
leading to a semantic error

The variable y introduced in the new rules only appears negated, and so cannot be grounded. Conse-

quently, a Datalog semantic restriction is broken, and so the produced program is invalid, despite the

semantic validity of the original rule.

In the general case, suppose we wish to inline a relation a in a rule r such that:



3.1 INLINERELATIONS : INLINING 28

• a appears negated in r, in the form ¬a(~x)

• a introduces a new variable v in one of its rules ra, such that v does not appear in the head of

ra

Inlining a in r means a new rule will be created such that the appearance of a is replaced with the

body of ra. Since the negated appearance ¬a(~x) of a in r must satisfy the groundedness requirements of

Datalog, all variables in ~x must already be grounded in r. Since ra introduces a new variable v, however,

v does not appear elsewhere in the rule, and so must be ungrounded. The rule produced must therefore

be invalid.

Condition 5 : Suppose R appears negated in some rule in P , in the form ¬R(~y), such that the k
th

argument yk is an unnamed variable. Moreover, suppose that there exists a rule ri : R(~x) Bi[~x] such

that the kth argument xk of the head atom appears more than once in the body Bi[~x]. Then, R cannot be

inlined.

Justification: Consider the fragment of Datalog code below, where I = {a}:

1 a(x)  b(x,x).

2 c(x)  d(x), ¬a(_).

Note that the unnamed variable in the appearance of a in c must immediately become named, as it is

used multiple times within the rule defined for a. The program will hence be rewritten into the form:

1 c(x)  d(x), ¬b(y,y).

The variable y does not appear in a positive body literal, and so it is ungrounded. The issue leading to

the invalidation of the Datalog program arises for a similar reason as the previous negation condition, in

the sense that new variables are being introduced which cannot be grounded.

3.1.3 Algorithm

3.1.3.1 ↵-reductions and Unification

As exemplary motivation for the chosen algorithmic design, consider the following fragment of a Data-

log program P , and let the set of inlined relations be I = {a}:
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1 .decl a(x,y) inline

2 a(x,y)  d(x,x), e(y), f(v,v,y).

3 a(x,y)  g(y,x).

4 ...

5 b(x)  c(x,z), b(y), a(y,z), d(v,v).

6 ...

a appears in a non-inlined rule b, and so the appearance must be replaced with the disjuncted combi-

nation of its two rules. However, note that a appears in the form a(y,z), while the rules have head

a(x,y). Thus, the variables in the two rules associated with a must first be renamed, as follows:

1 .decl a(x,y) inline

2 a(y,z)  d(y,y), e(z), f(v,v,z).

3 a(y,z)  g(z,y).

4 ...

5 b(x)  c(x,z), b(y), a(y,z), d(v,v).

6 ...

Suppose we immediately embed the rules into b without further adjustment. The final program is then:

1 b(x)  c(x,z), b(y), (d(y,y), e(z), f(v,v,z) ; g(z,y)), d(v,v).

Expanding the disjunction, we now have:

1 b(x)  c(x,z), b(y), g(z,y), d(v,v).

2 b(x)  c(x,z), b(y), d(y,y), e(z), f(v,v,z), d(v,v).

Notice that the variable v introduced in the second rule has now been implicitly equated with the v

already existing in the rule prior to the inlining round. The semantics of the rule have hence changed,

as these two variables were distinct, since they appeared in different rules. This issue with boundedness

motivates the need for complete variable renaming prior to inlining, such that all variables in the rules

of inlined relations are given unique names. The process of renaming is called an ↵-reduction.

Recall the original program P :
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1 .decl a(x,y) inline

2 a(x,y)  d(x,x), e(y), f(v,v,y).

3 a(x,y)  g(y,x).

4 ...

5 b(x)  c(x,z), b(y), a(y,z), d(v,v).

6 ...

Performing an ↵-reduction on the two rules for a results in the equivalent program:

1 .decl a(x,y) inline

2 a(x1,y1)  d(x1,x1), e(y1), f(v1,v1,y1).

3 a(x2,y2)  g(y2,x2).

4 ...

5 b(x)  c(x,z), b(y), a(y,z), d(v,v).

6 ...

However, the appearance of a is still in the form a(y,z), and so argument matching must occur. The

process of matching arguments in the head of a rule with the appearance of a literal is called unifica-

tion. Normally, unification in a logic-programming engine is performed through an iterative variable-

matching algorithm (Martelli and Montanari, 1982). However, as we are already in a logic-programming

environment, and variables are now uniquely named in the rules we wish to inline, we can avoid the in-

tricacies of such an implementation through the use of constraints. In particular, we can replace the

appearance of the relation with the body of the rule directly, and then add in equality constraints to unify

the head and the appearance. The obligation of unification has hence been pushed from the transforma-

tion to the underlying Datalog system.

For instance, in the above example, we can form the appropriate unified version of the second rule for

a by adding the equality constraint x2 = y, y2 = z. The program produced, after disjunctions have

been expanded, is then:

1 b(x)  c(x,z), b(y), d(x1,x1), e(y1), f(v1,v1,y1), x1 = y, y1 = z,

d(v,v).

2 b(x)  c(x,z), b(y), g(y2,x2), x2 = y, y2 = z, d(v,v).
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which satisfies our expectations.

3.1.3.2 The Inlining Algorithm

The inlining algorithm designed repeatedly applies the literal-replacement procedure shown in the pre-

vious example until a fixpoint is reached, taking into account necessary unifications and ↵-reductions.

Algorithm 2 performs one iteration of the literal-replacement procedure on a clause given an embedded

literal to inline. Algorithm 3 then uses the clause inlining algorithm to perform the complete inlining

transformation.

Algorithm 2 Inlining a given literal in a clause
Given: a clause c and a literal ` in c to inline
Output: the clause c

0 with ` inlined
1: procedure INLINECLAUSELITERAL(c, `)
2: result new empty rule
3: SETHEAD(result) CLONEHEAD(c)
4: SETBODY(result) CLONEBODY(c) without `
5: addedDisjunction ;
6:
7: . if negated, get the associated positive atom
8: R(~y) GETATOM(`)
9:

10: . add each rule to the disjunction, adding unification constraints
11: for each rule r of the form R(~xi) Bi[~xi] do
12: addedDisjunction addedDisjunction _ (Bi[~xi], ~xi = ~y)

13:
14: . add the disjunction to the clause
15: if R(~y) was negated then
16: result.ADDTOBODY(¬addedDisjunction)
17: else
18: result.ADDTOBODY(addedDisjunction)
19: return result
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Algorithm 3 Inlining algorithm
Given: a Datalog program P and a set of relations I to inline s.t. P and I satisfy the above conditions
Output: transforms P into a semantically equivalent program P

0 s.t. all relations in I are completely
inlined

1: procedure INLINE(P , I)
2: . perform an ↵-reduction on all inlined relations
3: for each relation R 2 I do
4: for each rule r 2 R do
5: Rename all variables in r to a program-wide unique variable name
6:
7: . inline literals until a fixpoint is reached
8: inliningPerformed true

9: while inliningPerformed do
10: clausesToRemove ;
11: for each clause c 2 P s.t. GETRELATION(c) /2 I do
12: if GETBODY(c) contains a literal ` s.t. GETRELATION(`) 2 I then
13: inliningPerformed true

14: add c to clausesToRemove

15: c
0  INLINECLAUSELITERAL(c, `)

16: add c
0 to P

17: for each clause c 2 clausesToRemove do
18: remove c from P

19:
20: . remove no longer necessary relations
21: for each relation R 2 I do
22: remove R from P

3.1.4 Implementation

The inlining algorithm was implemented as a new AST transformation in the SOUFFLÉ Datalog evalua-

tion engine. The transformation is called the InlineRelationsTransformer. The programmer

can denote the set of inlined relations I using the newly added keyword, inline, during relation dec-

laration. For example, the following is now a valid program:

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1)  natural(x), x < 1000.

4

5 .decl good_pair(x:number, y:number) inline

6 good_pair(x,y)  natural(x), natural(y).

7

8 .decl bad_pair(x:number, y:number) inline
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9 bad_pair(x,x)  natural(x), natural(x).

10

11 .decl query(x:number, y:number)

12 query(x,y)  good_pair(x,y), ¬bad_pair(x,y), x < 50.

13

14 .output query

Here, I is chosen by the programmer to be the set {good_pair, bad_pair}. The actual implemen-

tation expands the disjunctions produced in rules using the usual distributive property of the operation

so that the output program only contains conjunctions in the rule bodies.

Note that programs using the inline declarative are always semantically equivalent to the same pro-

gram with the declarative removed, and so the output is identical. The new feature hence constitutes no

semantic changes, but provides a hint to the evaluation mechanism in the backend that rewriting some

rules in a certain equivalent manner may provide benefits. Unlike some programming languages, such as

C, the SOUFFLÉ engine currently always inlines a relation marked with the inline keyword, provided

that the aforementioned conditions are met, without an analysis of potential efficiency gains. The inlin-

ing functionality added to SOUFFLÉ is hence only semi-automatic, in that, although the transformation

process is fully automated, the optimisation is manually activated through user annotations.

3.2 ReduceExistentials: Reducing Existential Relations

When defining relations in Datalog programs, the evaluation engine discovers all possible tuples over

the universe that can fit the established criteria. In certain cases, the actual tuples generated are irrelevant

to the remainder of the program, and the only concern is whether any valid tuple at all can be discovered

for the relation. The desire is then for an existential check, rather than a full computation.

We define a singleton variable v to be any variable in a rule r such that v appears exactly once in r. The

instantiated value of that variable is irrelevant, as it has no consequence on any other value in the rule.

Now, consider an appearance R(~x) of a relation R in the body of a rule r such that all arguments in the

vector ~x are singletons in the rule r. We say that the appearance is then an existential appearance of the

relation R. If all appearances of R in the program are existential, bar recursive appearances in the rules

of R itself, then we call R an existential relation. As the instantiated values of singleton variables have
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no consequence, the actual tuples appearing in an existential relation are unnecessary; the only required

check is that any tuple exists in the relation at all.

An immediate corollary is that the arguments of existential relations do not matter. The program needs

to only keep track of whether any tuple can be generated for the relation. The relation can therefore

be transformed into a proposition; that is, a relation with no arguments. Unlike relations with non-zero

arity, propositions can essentially take on only two values, true or false, depending on the satisfiability

of its rules. The simplicity of propositional relations allows the backend system to take advantage of

special optimisation opportunities. For example, once a rule for the proposition is found to be satisfiable,

rule processing can be stopped entirely for the relation. Unfortunately, SOUFFLÉ is limited in the area of

propositional optimisations. Nevertheless, transforming relations with non-zero arity into propositions

means less storage is required for the relation, as no values must be stored beyond a boolean result for

emptiness.

Our focus is on program-rewriting transformations, independent of the evaluation mechanism used,

rather than the propositional optimisations in the backend. We therefore shift our attention to a more

high-level view of the Datalog code. In particular, consider any existential relation R with a directly

recursive rule rrec. Due to the restrictions of program stratification, the recursive appearance of R in rrec

must be positive. Therefore, rrec will only produce a new tuple if the appearance of R can be satisfied.

The appearance can only be satisfied if R already contains a tuple. However, since R is only used

existentially, the only concern is whether any tuple at all can be generated for the relation. The recursive

rules for R are therefore redundant, and their computation unnecessary. Recursive rules for existential

relations can therefore be removed from the program without effect. Recursive rules typically require

continuous iterative refirings, and so the gains may be dramatic. As an extreme example, some relations

may potentially have infinitely recursing rules, despite only appearing existentially. The removal of the

recursive rules for such relations can hence transport the program from the realm of non-termination to

termiation, without compromising program semantics from a declarative perspective.

Some work has been done in the past on eliminating existential arguments of relations (Ramakrishnan

et al., 1988). However, the special case of existential relations lends new optimisation opportunities

that have not yet been discussed. Moreover, the work relies on uniform equivalence for rule deletion,

which is undecidable in Datalog with functors (Sagiv, 1988). The recursive rule deletion discussed for

existential relations here does not rely on a separate program-minimising transformer, and applies to

general Datalog programs with functors.
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Significant performance benefits can therefore be gained with respect to both time and memory by

discovering existential relations, and transforming them in such a way into non-recursive propositional

relations. We call such a transformation of an existential relation existential reduction. As explained, the

change into a propositional relation and the deletion of recursive clauses both provide separate advan-

tages. Both changes clearly always improve program efficiency. The development of a transformation

to deal with existential relations hence has great potential.

3.2.1 Motivation

Consider the following Datalog program P :

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1)  natural(x), x < N.

4

5 .decl query()

6 query()  natural(_).

7

8 .output query

P outputs the value of the query proposition, which is true if and only if the single body atom

natural(_) can be satisfied. The underscore in Datalog programs is used to represent singleton vari-

ables; essentially, variables that are not used anywhere else in the rule, and so do not need to be named.

The atom can therefore be satisfied by any tuple in the natural relation, if any exist. natural is

hence an existential relation in P ; all uses of the relation (outside of its own recursive rules) only require

a check that it is non-empty. Due to the semantics of bottom-up evaluation, the natural relation will

nevertheless be fully computed beforehand, producing O(N) tuples. The query then just checks that the

produced set is non-empty, taking O(1) time. The program hence takes O(N) time to evaluate.

The computation of the natural relation is extremely wasteful. Computing and storing the full set of

O(N) tuples beforehand, to only just check whether the set is empty, is extremely inefficient. Since the

natural relation is existential, we can begin optimising by noticing that its recursive rule is redundant;

the recursive rule only holds if the body atom natural(x) holds for some x. Thus, the recursive rule
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will discover atoms in the natural relation only if natural already contains at least one value. Since

we are only concerned in whether the set is non-empty, the recursive rule can be deleted, as follows:

1 .decl natural(x:number)

2 natural(0).

3

4 .decl query()

5 query()  natural(_).

6

7 .output query

The existentiality of the natural relation means that its arguments never matter, and so do not need

to be stored. Consequently, the relation can also be transformed into its propositional counterpart by

eliminating its arguments in all its appearances, to produce the following program P
0:

1 .decl natural()

2 natural().

3

4 .decl query()

5 query()  natural().

6

7 .output query

Interestingly, due to the presence of a fact for natural in the original rule set, the remaining rule

immediately sets the proposition to be true with no further computation. Notice further that P 0 is now

entirely independent of N . As the recursive rule was the root cause of evaluation overhead for the rela-

tion, the advantages are significant in both time and memory. The net result is that program evaluation

has now dropped from O(N) to O(1) time and storage.

Both transformations were justified by the fact that the original natural relation was solely used in

an existential sense. Had the natural relation been used in any other rule in a non-existential fashion,

then the actual values of the tuples in natural would be important. The transformations would then

not be valid. We are relying on the use of unnamed variables to denote singletons, as is convention in the

Datalog world. Programmers may at times neglect to use unnamed variables for singletons, however.
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We will rely on another transformation, discussed in Section 3.3, to find and unname such variables, as

such a transformation may provide other benefits.

3.2.2 Conditions

For the transformation to be applied to a given relation R, R must be an existential relation. That is,

for all appearances R(~x) of R (outside of its own recursive rules), all arguments in ~x must be unnamed

variables. A separate transformation, discussed in Section 3.3, can be used to transform all named

singleton variables into unnamed variables beforehand.

Moreover, we also impose the restriction that the existential relation R cannot be an input or output

relations. Input relations may have some facts not available at compile-time, which are given in a fixed

format depending on the arguments in the relation declaration. Thus, input relations might not be able

to be propositionalised. On the other hand, output relations must always be fully computed, regardless

of how they are used in the remainder of the program.

3.2.3 Algorithm

The overall transformation algorithm is divided into two major steps: (1) discovering all existential

relations in the program suitable for transformation, and (2) existentially reducing these relations.

3.2.3.1 Discovering Existentially Reducible Relations

The first stage of the algorithm is the discovery of all existential relations. Determining whether a rela-

tion is existential involves checking whether all appearances outside its own recursive rules contain only

unnamed variables. Note, however, that an iteration of existential reduction may lead to the deletion of

clauses. As these deleted clauses potentially contain the only non-existential appearances of some rela-

tions, it may be the case that a new set of relations are existential after an iteration of the transformation.

To see the issue in practice, consider the following program P :

1 .decl a(x:number)

2 a(x)  b(_), c(x), d(x).

3 a(x+1)  b(x), a(x).

4

5 .decl b(x:number)
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6 b(x)  e(x), f(x).

7

8 .decl query()

9 query()  a(_).

10

11 .output query

a is a typical existential relation. b is not, as it appears non-existentially in a rule of a. As a is existential,

we can reduce the program as discussed earlier to the following form, transforming a into a propositional

non-recursive relation:

1 .decl a()

2 a()  b(_), c(x), d(x).

3

4 .decl b(x:number)

5 b(x)  e(x), f(x).

6

7 .decl query()

8 query()  a().

9

10 .output query

The recursive rule of a was deleted. The rule was the only non-existential appearance of b, and so b is

now existential. The transformation can therefore be applied again, producing:

1 .decl a()

2 a()  b(), c(x), d(x).

3

4 .decl b()

5 b()  e(x), f(x).

6

7 .decl query()

8 query()  a().

9

10 .output query
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No remaining relations are existential, and so the transformation no longer applies.

Rather than working towards a fixpoint in the general case, we can use a graph structure to find all

relations to transform in a single iteration. Consider a graph G where the nodes are the relations of the

program, and an edge (a, b) exists in G if and only if b appears non-existentially in a directly recursive

rule belonging to a. We say that a relation R is eventually existentially reducible in a program P if, after

a finite number of applications of existential reduction on P , R becomes existentially reducible. We

claim that, ignoring input and output relations, R is eventually existentially reducible if and only if:

(1) all ancestors of R in G are also eventually existentially reducible

(2) all appearances of R outside of recursive rules are existential

PROOF. We begin by proving the reverse implication: if R satisfies the two conditions, then it is

eventually existentially reducible. Since all ancestors of R are eventually existentially reducible, after a

certain number of iterations of the transformer, say k, all recursive relations belonging to the ancestors of

R will be deleted. By the definition of G, the edge (a, b) exists if and only if b appears non-existentially

in a recursive rule belonging to a. Therefore, no other relations use R non-existentially in their recursive

rules. We can conclude that R appears existentially in all recursive rules. The second condition tells us

that all other appearances of R (outside of the recursive rules defined for R itself) are also existential.

By the definition of an existential relation, R must therefore be existential after the k
th iteration, and so

can be reduced in the next. R is hence eventually existentially reducible.

For the forward implication, suppose R is eventually existentially reducible. The second condition must

hold immediately, as non-recursive rules can never be removed by existential reduction. Suppose now

that the relation S is an ancestor of R in G. By definition of G, R appears non-existentially in a directly

recursive rule belonging to S. But R is eventually existentially reducible, and so after some number of

iterations, say k, it must be existential. The non-existential appearance therefore cannot exist after k

iterations. The only possibility is that the recursive rule of S must have been deleted, and so S must be

eventually existentially reducible as well. Consquently, all ancestors of R in G must also be eventually

existentially reducible. The two conditions hold, and so both sides of the implication are true. ⇤

Notice that we can just reduce all eventually existentially reducible relations in the first iteration, rather

than repeatedly applying the procedure. Thus, we can use Algorithm 4 to find the set of all relations to

existentially reduce. The algorithm finds all relations that are fundamentally irreducible: input/output
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relations, and relations breaking condition two. By our proof above, the only other relations that are not

reducible are descendents of these.

Algorithm 4 Discovering existentially reducible relations
Given: a Datalog program P

Output: the set of relations E that are existentially reducible
1: procedure FINDEXISTENTIALRELATIONS(P )
2: G an empty graph
3:
4: . create the nodes in the graph
5: for each relation R 2 P do
6: add R as a node to G

7:
8: . baseIrreducibles are fundamentally irreducible relations
9: baseIrreducibles ;

10:
11: for each input/output relation R 2 P do
12: . IO relations are not reducible
13: add R to baseIrreducibles
14: for each relation R 2 P do
15: for each rule r 2 R do
16: for each body atom a 2 r do
17: if a contains any non-unnamed variables then
18: A GETRELATION(a)
19: if r is directly recursive then
20: . A is conditionally existential
21: add the edge (R,A) to G

22: else
23: . A breaks condition two
24: add A to baseIrreducibles

25:
26: . find relations that hence do not satisfy the first condition
27: allIrreducibles ;
28: for each relation r 2 baseIrreducibles do
29: newIrreducibles relations reachable from r in G through a DFS
30: allIrreducibles allIrreducibles [ newIrreducibles

31:
32: . all other relations are existentially reducible
33: E  ;
34: for each relation R 2 P do
35: if R /2 allIrreducibles then
36: add R to E

37: return E
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3.2.3.2 Transforming Existentially Reducible Relations

Once all existentially reducible relations have been found, the transformation step can be applied to each

of the relations to produce the final program. The process is shown in Algorithm 5.

Algorithm 5 Transforming existentially reducible relations
Given: a Datalog program P

Output: transforms P into a semantically equivalent program P
0 s.t. all existentially reducible relations

have been reduced
1: procedure REDUCEEXISTENTIALRELATIONS(P )
2: E  FINDEXISTENTIALRELATIONS(P )
3: for each relation R 2 E do
4: create a new propositional relation existsR, taking in no arguments
5: copy over all non-recursive rules for R to existsR

6: replace all occurrences of R in the program with existsR

7: delete the relation R from P , along with its rules
8: add existsR to P

3.2.4 Implementation

The algorithm was implemented as a new AST transformation in the SOUFFLÉ Datalog evaluation en-

gine. The transformation is implemented as the ReduceExistentialsTransformer class. As

mentioned previously, we assume that all singleton variables have already been set as unnamed vari-

ables in the input program. Another transformer, called the ReplaceSingletonVariables trans-

former, will be discussed in Section 3.3. The transformer unnames singleton variables, hence making

the ReduceExistentials transformer more effective.

As the discovery and transformation steps are fully automated, input Datalog programs remain the same,

and programmers can use the language exactly as before.

Unfortunately, propositions are not effectively optimised in SOUFFLÉ. Further gains can therefore be

exploited from this transformation by optimising the use of propositions in the backend evaluation sys-

tem.

3.3 ReplaceSingletonVariables: Singleton Removal

A singleton variable in a given rule is any variable used exactly once in that rule. That is, the variable

is not constrained, and so can take on any value without affecting the rest of the rule. As they are only
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used once, singleton variables do not need to be referred to again, and so can remain unnamed. The

convention for programs in common logic languages is to represent unnamed variables with a different

symbol, almost always an underscore character (‘_’).

Knowing which variables are singletons opens new avenues for optimisation for both program-rewriting

transformations and the backend evaluation strategies. From the perspective of evaluation, consider the

appearance of an atom a(~x) in the body of some rule being evaluated. When the program is compiled

into imperative code, the usual technique is to transform the atom into a scan over all items in the rela-

tion a. The process is hence linear in the size of a. On the other hand, if all arguments to a in such an

appearance are known to be singletons, then the compiler can instead transform this into a constant-time

existential check: does any tuple exist in a? When instead considering program-rewriting transforma-

tions, the presence of singletons may lead to satisfying the program conditions of other transformers.

One example is the reduction of existential relations, described in Section 3.2, where the presence of

singleton variables is the main trigger for the transformation.

It is therefore of interest to discover and mark all singleton variables, so that both the evaluation strategy

and future transformations are aware of their use. The ideal means for marking singletons is by denot-

ing them as unnamed variables throughout. Although programmers are able to use unnamed variables

directly, some singletons may not be marked. One possible reason for neglecting the use of unnamed

variables for singletons is the programmers themselves. Programmers may not notice that a variable is

a singleton, may not be aware that unnamed variables create greater potential for program optimisation,

or may simply prefer the clarity provided by naming singletons in certain contexts. On the other hand,

certain variables may only become singletons after another program-rewriting transformation. Thus, a

built-in automated transformation for discovering and unnaming singleton variables is a useful addition

to a transformation pipeline.

3.3.1 Motivation

Consider the following very simple program P :

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1)  natural(x), x < N.

4

5 .decl a(x:number)
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6 a(0)  natural(z).

7

8 .decl query(x:number)

9 query(x)  a(x).

10

11 .output query

The query outputs all values in the relation a. The sole rule of a is satisfied if there is a value z 2

natural. The variable z does not appear elsewhere in the rule, and so is a singleton. z can therefore

be replaced with an unnamed variable, ‘_’, passing on that it is a singleton to both the evaluation engine

in the backend and future transformations. The result is the following program P
0:

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1)  natural(x), x < N.

4

5 .decl a(x:number)

6 a(0)  natural(_).

7

8 .decl query(x:number)

9 query(x)  a(x).

10

11 .output query

Though P and P
0 appear extremely similar, the implications of the change are significant.

To observe the impact on evaluation strategy, we will observe the produced imperative code for each

program. First, consider the query relation common to both P and P
0. All values in a are copied into

query, and so a full scan of the relation a is necessary. The code produced for the query rule is hence

of the form:

1 FOR EACH TUPLE (x) IN RELATION a:

2 ADD (x) TO RELATION query
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Let us now shift our focus to the single rule for a in the original program P . As the evaluation strategy

is unaware that x is a singleton in the rule, it must similarly scan through all values in natural to

guarantee a check of all possible instantiations. The complete scan is essential in the general case, in

case different instantiations of the variable x produce different results. Thus, the compiled code for the

relation a will be of the form:

1 FOR EACH TUPLE (x) IN RELATION natural:

2 ADD (0) TO RELATION a

The produced code hence takes O(N) time to evaluate, as natural contains N tuples. On the other

hand, the use of an unnamed variable in the rule in P
0 means that the evaluation strategy is now aware

that the instantiated value of x is irrelevant, as it is not used elsewhere in the rule. Thus, the compiled

program will instead be of the form:

1 IF 9 TUPLE (x) IN RELATION natural:

2 ADD (0) TO RELATION a

The complete scan of natural is replaced with a single existential check of the relation natural; on

an imperative level, a loop through a relation has been replaced with a simple conditional. The result is

constant evaluation time, rather than a linear scan.

Note that, due to the recursive nature of the natural relation, the total time is still linear, as natural

must compute all N tuples. However, the mutation of the singleton into an unnamed variable has now

also opened up a new avenue for optimisation, namely through existential reduction. The natural

relation now appears only existentially in the program P
0, and so the transformation discussed in Section

3.2 can now be applied to produce the following program P
00.

1 .decl natural()

2 natural().

3

4 .decl a(x:number)

5 a(0)  natural().

6

7 .decl query(x:number)

8 query(x)  a(x).
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9

10 .output query

Notice that the program P
00 is now entirely independent of N , and evaluation now takes constant time

due to the interaction of the two transformers. The transformation is hence motivated from the perspec-

tive of both evaluation strategies and program-rewriting optimisations. The interaction of interdepen-

dent transformers is also motivated, and will be further discussed in Chapter 4, where a transformation

pipeline is constructed.

As an aside, it is important to note that the programmer may not be able to unname certain variables

immediately in the original program. Unnaming opportunities sometimes arise only as a result of other

transformations. For example, consider the simple datalog rule:

1 c(x)  b(y), b(y), d(x).

The variable y cannot be immediately unnamed by the programmer, as it appears twice in the same rule.

However, the second appearance of the atom b(y) is redundant due to the idempotency of conjunction

in logical calculus. One appearance of b(y) can hence possibly be removed through a high-level

transformation to produce the following modified rule:

1 c(x)  b(y), d(x).

The variable y is now a singleton, and can be safely unnamed.

1 c(x)  b(_), d(x).

Future transformers can then possibly further optimise the resultant program.

3.3.2 Conditions

The transformation works on general Datalog programs. All singleton variables can be safely replaced

with unnamed variables, as program semantics do not change. The process is completely automated and

does not rely on programmer annotations.



3.4 PARTITIONBODYLITERALS : PARTITIONING RULE BODIES 46

3.3.3 Algorithm

As the singleton property of a variable is a property local to each rule, the transformation can be per-

formed by iterating through each rule and discovering all singletons. The algorithm is shown in Algo-

rithm 6.

Algorithm 6 Unnaming named singleton variables
Given: a Datalog program P

Output: transforms P into a semantically equivalent program P
0 s.t. all named singleton variables have

been replaced with unnamed variables
1: procedure REPLACESINGLETONVARIABLES(P )
2: for each rule r 2 P do
3: variables ;
4: nonsingletons ;
5: for each variable v 2 r do
6: if v 2 variables then
7: add v to nonsingletons

8: else
9: add v to variables

10: singletons variables \ nonsingletons
11: for each variable v 2 r do
12: if v 2 singletons then
13: replace v with an unnamed variable

3.3.4 Implementation

Singleton removal was implemented as a new AST transformation in the SOUFFLÉ Datalog evalua-

tion engine. The transformation is called the RemoveSingletonVariablesTransformer, and

works on general SOUFFLÉ programs.

3.4 PartitionBodyLiterals: Partitioning Rule Bodies

Propositions are predicates with arity zero. When evaluating the rules of propositional relations, no

information must be stored on which variable instantiations satisfied the rule. As discussed in Section

3.2, once any instantiation of variables is found to satisfy the rule of a proposition, no other instantiations

must be checked. The proposition then takes on a value of either true or false, based on the satisfiability

of its rules, acting as a ‘constant’ truth value for the remainder of the program. The binary state of the

proposition means the truth value of its appearances once it is computed can always be evaluated in

constant time. Placing propositions at the start of rules can therefore allow a rule to be skipped entirely,
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as discussed in Section 3.5. Due to such unique properties, the use of propositions can be especially

optimised in the backend evaluation system.

Suppose a propositional relation is inlined. The first impact is that the backend evaluation system can

no longer take advantage of such properties of propositions. Moreover, when embedded in the rules the

proposition appears in, the lack of arguments means the introduced body literals will always be indepen-

dent of the remainder of the rule. In particular, no new constraints are introduced. Inlining propositional

relations therefore offers no benefits in reducing the number of possible satisfying instantiations of vari-

ables in the rule. The truth value of the proposition must also now be recomputed at each appearance,

despite always producing the same single result. We therefore gain no benefits offered by the inlining

transformation, while suffering the potential unnecessary repeated computations. In some cases, the

truth value may even be recomputed multiple times within the same rule. For example, consider the

following fragment of a Datalog program P :

1 .decl Prop() inline

2 Prop()  a(z), b(z), c(z).

3

4 .decl R(x:number)

5 R(x)  d(x), Prop(), e(x).

The propositional relation Prop is inlined into the rule for R to produce the output program P
0:

1 .decl R(x:number)

2 R(x)  d(x), a(z), b(z), c(z), e(x).

Suppose that the relation d in P is large, say of size N . Moreover, suppose that the rule for the relation

Prop evaluates to true, while the relation e is empty. In the original program P , the satisfiability of the

single rule for Prop will only be checked once. Prop() will then act as a true value for the remainder

of the program, without needed to be rechecked. On the other hand, embedding the rule into the clause

for R in P
0 means that the satisfiability of the rule for Prop will necessarily be checked N times, as we

fail and backtrack at e(x) for all values of x 2 d. In the situation where the relation a is large for this

program, the increase in computation necessary can be significant.

The only scenario where it is better to inline a propositional relation is when the value of the proposition

need not be computed at all in any rule of the program. For example, in the above program, if the relation
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d is empty, then the value of the proposition is never used, and so is unnecessary. In a typical bottom-up

computation of P , however, Prop will be evaluated beforehand, since R is dependent on Prop. In P
0,

Prop does not exist as a separate relation, and so the relations a, b, and c will not be scanned if d

is empty. Therefore, unless a check for the value of the propositional relation will never be triggered,

inlining is a disadvantage to the efficiency of the program in a bottom-up evaluation engine.

By considering the converse of the situation, we hence propose the idea of ‘reverse-inlining’ or ‘outlin-

ing’ propositions. If some subset of literals in a rule body are entirely independent of the variables in

the head of the rule, then the literals act as a propositional check independent of the remainder of the

rule. Consequently, the literals can be pushed out (or outlined) into separate propositional relations, and

replaced with a single propositional check. Needless recomputations of the satisfiability of a subset of

the rule are hence reduced in many cases.

A natural conceptual extension is that rule bodies may be partitioned such that the variables used in

partition p are entirely independent of the variables in partition q for all distinct partitions p and q.

That is, changing the instantiated value of a variable in a literal in p has no consequence, indirect or

otherwise, on the truth result of a literal in partition q. The partitions that the head atom depends on

must remain in the clause, while all others may be pushed out into separate independent propositional

relations, and replaced with an atomic check on the satisfiability of the proposition. Up to a reordering

of body literals, inlining the produced propositional relations will return the original program, without

the discussed benefits of using propositions in Datalog programs. Extraneous sections of clauses can

therefore be extracted into separate relations, potentially reducing needless recomputations. The net

benefit is reduced evaluation time, especially for computationally complex rule sets.

Similar work has been touched on briefly in the past (Ramakrishnan et al., 1988), but is not discussed

in depth nor experimentally justified. The paper also does not discuss the finer partitioning of rules into

multiple propositions based on variable interdependencies, nor the link with inlining. Moreover, the

importance of placing the generated propositions first in the rule, as discussed in the motivation below,

is not mentioned, but is critical for optimal performance. We discuss the importance of literal ordering

further in Section 3.5.

3.4.1 Motivation

Consider the definition of the following relation worried:
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1 .decl worried(x:string)

2 worried(x)  person(x), ¬jailed(x), thief(y), ¬jailed(y).

3

4 .output worried

The relation worried will output the set of all unjailed people if there is a thief y that is not jailed. If

the rule was directly evaluated, the produced imperative code would be of the following form:

1 FOR EACH TUPLE (x) IN RELATION person:

2 IF (x) IS NOT IN jailed:

3 FOR EACH TUPLE (y) IN RELATION thief:

4 IF (y) IS NOT IN jailed:

5 ADD (x) TO RELATION worried

The code takes O(|person| · |thief|) time. Notice that we perform a full scan of the relation thief

for each possible instantiation of the variable x in person. The result of the scan never changes

based on the instantiation of x, however, and so is unnecessary. Looking solely at the imperative code

produced, we hence have an immediate natural optimisation, as follows:

1 unjailed_thief_exists := FALSE

2

3 FOR EACH TUPLE (y) IN RELATION thief:

4 IF (y) IS NOT IN jailed:

5 unjailed_thief_exists = TRUE

6

7 FOR EACH TUPLE (x) IN RELATION person:

8 IF (x) IS NOT IN jailed:

9 IF unjailed_thief_exists:

10 ADD (x) TO RELATION worried

Essentially, we have pulled out the check that the inner loop performs into a separate external loop. The

code now takes O(|thief|+ |person|) time, rather than O(|person| · |thief|) time, and so there is

a clear benefit. Notice the negative effect in the corner-case that person is empty, as mentioned earlier.
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Recall that our focus is only on high-level program-rewriting transformations, however. We wish to

emulate the above change in imperative code through such a transformation. Notice how the inner loop

has simply been replaced with a propositional check: does an unjailed thief exist? The value of the

proposition itself is checked and stored separately prior to the scan of the person relation. The natural

conclusion is hence to pull out the independent section of the rule into a new propositional relation,

producing the following transformed program:

1 .decl worried(x:string)

2 worried(x)  person(x), ¬jailed(x), unjailed_thief_exists().

3

4 .decl unjailed_thief_exists()

5 unjailed_thief_exists()  thief(y), ¬jailed(y).

6

7 .output worried

The produced imperative code is then very similar to the one above, with the same improvement in time

complexity:

1 FOR EACH TUPLE (y) IN RELATION thief:

2 IF (y) IS NOT IN jailed:

3 ADD () TO RELATION unjailed_thief_exists

4

5 FOR EACH TUPLE (x) IN RELATION person:

6 IF (x) IS NOT IN jailed:

7 IF 9 TUPLE () IN RELATION unjailed_thief_exists:

8 ADD (x) TO RELATION thief

Consider now the following more complex rule:

1 a(x)  b(x,y), c(y), d(z), e(z), f(w,v), g(v).

The produced imperative code without any transformations will be of the form:

1 FOR EACH TUPLE (x,y) IN RELATION b:

2 IF (y) IS IN RELATION c:

3 FOR EACH TUPLE (z) IN RELATION d:
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4 IF (z) IS IN RELATION e:

5 FOR EACH TUPLE (w,v) IS IN RELATION f:

6 IF (v) IS IN RELATION g:

7 ADD (x) TO RELATION a

The code takes O(|b| · |d| · |f|) time. Notice that the first check, IF (y) IS IN RELATION c,

cannot be extracted out, as x must potentially be added to the relation a, and y is dependent on the value

of x. However, all other inner loops and checks are independent of their values, and so can be extracted

out as before:

1 extracted_section := FALSE

2

3 FOR EACH TUPLE (z) IN RELATION d:

4 IF (z) IS IN RELATION e:

5 FOR EACH TUPLE (w,v) IS IN RELATION f:

6 IF (v) IS IN RELATION g:

7 extracted_section = TRUE

8

9 FOR EACH TUPLE (x,y) IN RELATION b:

10 IF (y) IS IN RELATION c:

11 IF extracted_section:

12 ADD (x) TO RELATION a

The code now takes O(|d| · |f| + |b|) time, and so we have improved our check. Again, the above can

be emulated by the following program:

1 newrel0()  d(z), e(z), f(w,v), g(v).

2 a(x)  b(x,y), c(y), newrel0().

The produced code is then actually as follows, with the same improved time complexity:

1 FOR EACH TUPLE (z) IN RELATION d:

2 IF (z) IS IN RELATION e:

3 FOR EACH TUPLE (w,v) IS IN RELATION f:

4 IF (v) IS IN RELATION g:
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5 ADD () TO RELATION newrel0

6

7 FOR EACH TUPLE (x,y) IN RELATION b:

8 IF (y) IS IN RELATION c:

9 IF 9 TUPLE () IN RELATION newrel0:

10 ADD (x) TO RELATION a

However, notice that in our propositional check, represented by the first loop chunk, the inner loop and

the associated check involving the variables w and v are independent of the outer loop and check, which

use only the variable z. The inner loop and check can hence be pushed out even further to produce the

following code:

1 extracted_rel := FALSE

2

3 FOR EACH TUPLE (w,v) IS IN RELATION f:

4 IF (v) IS IN RELATION g:

5 extracted_rel = TRUE

6

7 FOR EACH TUPLE (z) IN RELATION d:

8 IF (z) IS IN RELATION e:

9 IF extracted_rel:

10 ADD () TO RELATION newrel0

11

12 FOR EACH TUPLE (x,y) IN RELATION b:

13 IF (y) IS IN RELATION c:

14 IF 9 TUPLE () IN RELATION newrel0:

15 ADD (x) TO RELATION a

The produced code is now further improved, taking O(|f|+ |d|+ |b|) time. The change can be emulated

in a very similar manner as done previously, by pushing out the independent sequence of body literals

in the new proposition formed into another separate propositional relation:

1 newrel1()  d(z), e(z).

2 newrel0()  f(w,v), g(v), newrel1().

3 a(x)  b(x,y), c(y), newrel0().
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Rather than recursively breaking up propositions formed, the literals in the original rule can be parti-

tioned directly based on the variables used and their interdependencies. Each complete subset of body

literals that is entirely independent of the literals in the remainder of the rule can be pushed out into a

separate proposition. For the above example, this produces the following equivalent program:

1 newrel0()  f(w,v), g(v).

2 newrel1()  d(z), e(z).

3 a(x)  b(x,y), c(y), newrel0(), newrel1().

The produced code is then as follows, with the same time complexity as the imperative program above:

1 FOR EACH TUPLE (w,v) IS IN RELATION f:

2 IF (v) IS IN RELATION g:

3 ADD () TO RELATION newrel0

4

5 FOR EACH TUPLE (z) IN RELATION d:

6 IF (z) IS IN RELATION e:

7 ADD () TO RELATION newrel1

8

9 FOR EACH TUPLE (x,y) IN RELATION b:

10 IF (y) IS IN RELATION c:

11 IF 9 TUPLE () IN RELATION newrel0:

12 IF 9 TUPLE() IN RELATION newrel1:

13 ADD (x) TO RELATION a

Partitioning body literals in such a way hence provides major benefits in terms of time complexity. Note,

however, that the inner IF statements are still checked once for each element of the outer FOR-loops.

Due to the lack of variables used in the IF statements in the final loop, the inner-conditionals are entirely

independent of the value of the variables instantiated. Consequently, we can improve performance by

reordering the statements, without compromising correctness. In particular, the propositional statements

(corresponding to the conditionals) should be reordered to appear prior to other predicates (correspond-

ing to the loops). Applying the principle to the Datalog program produces the following equivalent

form:

1 newrel0()  f(w,v), g(v).
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2 newrel1()  d(z), e(z).

3 a(x)  newrel0(), newrel1(), b(x,y), c(y).

The transformation results in the following imperative code:

1 FOR EACH TUPLE (w,v) IS IN RELATION f:

2 IF (v) IS IN RELATION g:

3 ADD () TO RELATION newrel0

4

5 FOR EACH TUPLE (z) IN RELATION d:

6 IF (z) IS IN RELATION e:

7 ADD () TO RELATION newrel1

8

9 IF 9 TUPLE () IN RELATION newrel0:

10 IF 9 TUPLE () IN RELATION newrel1:

11 FOR EACH TUPLE (x,y) IN RELATION b:

12 IF (y) IS IN RELATION c:

13 ADD (x) TO RELATION a

Although the worst-case time complexity remains unchanged, the scan of relation b will now only occur

if the propositional statements pass, which are O(1) checks. The idea of atom-reordering to achieve

similar gains is highlighted further in Section 3.5. Extracting disconnected body partitions, and replacing

them with early propositional checks, can hence produce much more optimal code in the general case.

3.4.2 Conditions

The transformation works on general Datalog programs with no restrictions. Detection of body literals

to push out into separate propositional relations can be done automatically. The transformation is hence

entirely automated, and requires no user annotations. User annotations may be beneficial in the case

where the programmer does not wish for extraction to occur, however.
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3.4.3 Algorithm

The essence of the transformation is to partition rule bodies based on variable-usage, and extracting out

partitions independent of the variables in the head. The transformation is hence local to each rule, and

can be divided into an analysis stage and an extraction stage.

3.4.3.1 Stage 1: Variable Dependency Analysis

The analysis stage begins the process by partitioning the set of variables in a rule based on variable

dependencies. The instantiation of certain variables may only affect or be dependent on a subset of other

variables in the rule, while being completely independent of the others.

For instance, consider the following rule Q:

1 Q(x,y)  A(x,t), B(t,s), C(s), D(x,y), E(u,v), B(u,r), F(r), G(k),

H(k).

We say that two variables v and w are directly connected, written v ⇠weak w, if they appear in the

same atom. Clearly, ⇠weak is a reflexive and symmetric relationship. Directly connected variables are

interdependent. For example, as t and x appear in the same atom A(t,x), t ⇠weak x. Changing the

value of x may affect what values t may take on and vice-versa, based on the contents of A.

Note that⇠weak does not fully capture the dependencies between variables. For example, since x ⇠weak

t, and t ⇠weak s, the instantiated value of x will affect what values t may take on, which in turn may

affect what values s takes on, despite x 6⇠weak s. It is hence of interest to consider the transitive closure

of the ⇠weak relation.

Let ⇠ be the transitive closure of ⇠weak. Clearly, ⇠ is an equivalence relation. As described, if x ⇠ y,

then the instantiation of either variable may affect the value of the other. Conversely, if x 6⇠ y, then

there is no path of predicates connecting the two variables, and so the instantiation of one will not affect

the other. ⇠ hence appropriately captures the dependency relationship between variables. Since ⇠ is an

equivalence relation, the equivalence classes of ⇠ naturally partition the set of variables in a rule based

on variable interdependencies.

To find these equivalence relations, we can begin by creating a graph modelling the relationship ⇠weak,

which involves a simple traversal of the literals in the rule. The nodes in the graph represent the variables
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in the rule, while an (undirected) edge exists between two variables if and only if they appear in the same

literal. Since ⇠ is the transitive closure of ⇠weak, the equivalence class of a variable v over ⇠ is exactly

those variables reachable from v in the graph. Partitioning over the equivalence classes of ⇠ is hence

equivalent to the discovery of all the connected components of a graph.

For example, in the rule defined above for Q, the graph in Figure 3.5 represents the ⇠weak relationship

between variables.

FIGURE 3.5. Graph representing the ⇠weak relation for the rule defined for Q

The connected components are then exactly the equivalence classes over ⇠, shown highlighted in dif-

ferent colours in Figure 3.6.
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FIGURE 3.6. Graph showing each equivalence class of dependent variables over the ⇠
equivalence relation in a different colour

In this case, the set of equivalence classes is {{x,y,t,s}, {r,u,v}, {k}}.

Algorithm 7 describes the process for a general Datalog rule R.
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Algorithm 7 Partitioning rule variables based on interdependencies
Given: a Datalog rule R

Output: the set of equivalence classes over ⇠
1: procedure PARTITIONRULEVARIABLES(R)
2: G an empty graph
3: . create the nodes of graph G

4: for each variable v 2 R do
5: add v as a node to G

6: . create the edges representing ⇠weak

7: for each literal ` 2 R do
8: if ` contains any variables then
9: w  an arbitrary variable in `

10: for each variable v 6= w 2 ` do
11: add the edge (v, w) to G

12: . find the connected components of G
13: seenNodes ;
14: connectedComponents ;
15: for each variable v 2 R do
16: if v 2 seenNodes then
17: continue
18: currentComponent all variables reached from a DFS on G from v

19: for each variable w 2 currentComponent do
20: add w to seenNodes

21: add currentComponent to connectedComponents

22: . the connected components are the desired equivalence classes
23: return connectedComponents

3.4.3.2 Stage 2: Proposition Extraction

The second stage is the extraction of body literals into propositions based on the variable partitions. The

variable partitioning of each rule from the previous stage induces a natural partitioning of the literals in

the rule. Each variable partition has an associated set of literals, namely the set of literals that use any

variables within that partition.

To see this in practice, consider again the rule from above.

1 Q(x,y)  A(x,t), B(t,s), C(s), D(x,y), E(u,v), B(u,r), F(r), G(k),

H(k).

The set of equivalence classes was found to be V = {{x,y,t,s}, {r,u,v}, {k}}. For the equivalence

class {x, y, t, s}, the set of associated literals (that is, literals in the rule using any variable in the
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equivalence class) is {Q(x,y), A(x,t), B(t,s), C(s), D(x,y)}. Similarly, the set of associated

literals for {r, u, v} and {k} are {E(u,v), B(u,r), F(r)} and {G(k), H(k)} respectively.

Notice that (1) each set of literals is disjoint, and (2) the union produces all literals in the original rule.

(1) is clearly true in the general case; if they share one variable, then they share all variables in the

partition. In particular, the head atom of the clause appears in at most one such set. (2), on the other

hand, is only true for all literals that use at least one variable. Propositions in the original rule can be

placed in any of these sets. For simplicity, add the propositions to the set of literals containing the head

atom if such a set exists; otherwise, create a new set for such literals, which will include the head atom.

With this extension, the sets of literals form a partitioning of the literals in the clause.

As each literal partition uses a different set of variables by construction, the instantiations of variables

in one partition will never affect, or be affected by, the values of variables in another partition. Thus,

with the exception of the partition involving the head atom, all other partitions can be extracted out

into separate propositional relations: the value of the variables does not matter for the remainder of the

clause, only that the subclauses are satisfiable.

To illustrate, consider again the set of literal partitions {{Q(x,y), A(x,t), B(t,s), C(s), D(x,y)},

{E(u,v), B(u,r), F(r)}, {G(k), H(k)}} for the above example. For the third partition, for in-

stance, we need to check that G(k) ^ H(k) is true for some instantiation of k. By construction of

the partitions, k will not be used elsewhere, in any other partition. Thus, the actual instantiated value

is unnecessary outside the scope of these two literals. The literals can hence be safely extracted out

into a separate propositional relation. The approach can similarly be performed for the second partition,

{E(u,v), B(u,r), F(r)}. The partition containing the head atom, {Q(x,y), A(x,t), B(t,s),

C(s), D(x,y)}, must of course remain in the clause, however, as the instantiated values must be stored

in the head relation. The original rule can hence be transformed into the following fragment of Datalog.

1 .decl newrel0()

2 newrel0()  G(k), H(k).

3

4 .decl newrel1()

5 newrel1()  E(u,v), B(u,r), F(r).

6

7 // original rule

8 Q(x,y)  newrel0(), newrel1(), A(x,t), B(t,s), C(s), D(x,y).
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As propositions are O(1) checks, it is beneficial to place them as the first atoms in the rule, as explained

in Section 3.5.

Algorithm 8 describes extraction process for the transformer.

Algorithm 8 Partitioning rule bodies
Given: a Datalog program P

Output: transforms P into a semantically equivalent program P
0 s.t. independent body literals are

extracted into propositions in all rules
1: procedure PARTITIONRULEBODIES(P )
2: for each rule r 2 P do
3: varPartitions PARTITIONRULEVARIABLES(r)
4: if varPartitions has only one partition then
5: . no need to keep going, no splitting possible
6: continue
7: replacementClause empty rule
8: SETHEAD(replacementClause) CLONEHEAD(r)
9: . deal with each disconnected set of literals

10: for each partition part 2 varPartitions do
11: if part is the head partition then
12: continue
13: extractedClause empty clause with extractedRelation as the head
14: for each literal ` 2 r do
15: if ` has no variables then
16: continue
17: v  arbitrary variable in `

18: if v 2 part then
19: add ` to extractedClause

20: add extractedClause to extractedRelation

21: add extractedRelation to P

22: replacementClause.ADDTOBODY(extractedRelation)
23: . deal with propositions and head-dependent literals
24: if GETHEAD(r) has variables then
25: v  arbitrary variable in GETHEAD(r)
26: headPartition partition in varPartitions containing v

27: else
28: headPartition emptyset

29: for each literal ` 2 GETBODY(r) do
30: if ` has no variables then
31: replacementClause.ADDTOBODY(`)
32: else
33: v  arbitrary variable in `

34: if v 2 headPartition then
35: replacementClause.ADDTOBODY(`)
36: remove r from P

37: add replacementClause to P
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3.4.4 Implementation

The transformation was implemented as a new AST transformation in the SOUFFLÉ Datalog evaluation

engine. The transformation is called the PartitionBodyLiteralsTransfomer. The process is

fully automated, and added to the main transformation pipeline.

3.5 ReorderLiterals: Literal Permutations

The declarative nature of the Datalog language means the ordering of statements does not impact pro-

gram semantics. In particular, rearranging the literals within the body of clauses should have no semantic

consequences; the body of a clause is a conjunction of literals, and conjunction is a commutative opera-

tion. As discussed previously, however, Datalog cannot be purely declarative, as it must be transformed

into imperative form to be run.

Each body atom is typically translated into a full scan of the relation, through a for loop, with each

consecutive atom being nested one level deeper. For example, a simple rule like the following:

1 a(x,y)  b(x,z), c(z,w), d(w,y).

would be translated into:

1 FOR EACH TUPLE (x,z) IN RELATION b:

2 FOR EACH TUPLE (z,w) IN RELATION c:

3 FOR EACH TUPLE (w,y) IN RELATION d:

4 ADD (x,y) TO RELATION a

Rearranging the atoms would hence cause the nesting levels to be rearranged. These nested levels may

interact with previous levels through conditions, variable name bindings, and so on. The ordering can

hence affect speed significantly. If the outer loops are relatively constraining and smaller in size, then

nested levels may not be searched as deeply or as much. On the other hand, if the outer loops involve

scanning large relations, or do not constrain each other, then the loop chunk may be unnecessarily

inefficient.
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For similar reasons, query scheduling is an important well-studied area in the database world. In the

same way that conjunctions are core to Datalog programs, joins are core to relational database lan-

guages, performing, essentially, the same idea of connecting different relations. Abstracting away the

typically non-recursive style of conventional database languages, the goal for database query schedulers

is ultimately to devise an optimal ordering during a sequence of multi-table join operation (Iyer and

Swami, 1994). The difficulty for such schedulers comes in from (1) deciding on a suitable cost-metric,

and (2) the factorial number of possible orderings for each query. The latter may make it infeasible to

gurantee the most optimal ordering regardless of the cost-metric. The cost-metric is usually based on

relation size, as smaller relations result in a smaller cross-product. However, the distribution of data

both within a single relation and between multiple relations can have a large effect on the size after a

join is complete, and may be difficult to efficiently predict. For example, fixing a particular column in

one relation may fix other columns. The use of heuristics has been shown to be promising in countering

the issues faced (Swami, 1989; Swami and Gupta, 1988).

In the Datalog world, however, the constructed ‘databases’ are not usually persistent like conventional

database systems. Instead, a different set of facts is given at the start of each run, and the database

is created purely to compute a fixed query. Consequently, relation sizes and data distribution are not

known statically, at the time the Datalog code is written. Thus, it may be more beneficial for query

scheduling to be handled dynamically at runtime by the evaluation engine itself. Nevertheless, the

variable-binding information inherently present in Datalog clauses, as well as user-defined domain-

specific knowledge and information from previous runs on different datasets, may provide hints that

allow us to work towards a more optimal ordering of body atoms.

We introduce a static query scheduling optimisation based on these principles. The query scheduler is a

user-driven static transformation on the Datalog program that reorders body atoms in clauses based on

a given heuristic. Several binding-based heuristics are provided as an option, each based on a different

cost-metric. The heuristics greedily choose the next atom to scan in the conjunction based on the priority

imposed by the cost-metric. The process hence emulates the choices typically done at runtime by con-

ventional database query optimisers. Though dynamic query schedulers have an obvious advantage by

having extra information at hand, we hope to gain similar improvements in some cases, despite cruder

predictions.
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3.5.1 Motivation

We begin with a simple teaser for the potential of a static query scheduler. Consider the following rule

defined for a relation R:

1 R(x,y)  A(x,z), B(z,y), P().

The corresponding imperative code is:

1 FOR EACH TUPLE (x,z) IN RELATION A:

2 FOR EACH TUPLE (z,y) IN RELATION B:

3 IF 9 TUPLE () IN RELATION P:

4 ADD (x,y) TO RELATION R

Notice that the IF statement nested at the deepest level in the loop chunk is entirely independent of the

other loops. The situation arises whenever a proposition is used. In particular, if the proposition does

not hold, then the outer scans of A and B will be fully performed, despite having no effect. The program

can easily be optimised by pushing out the proposition into the highest level, prior to any scan.

1 IF 9 TUPLE () IN RELATION P:

2 FOR EACH TUPLE (x,z) IN RELATION A:

3 FOR EACH TUPLE (z,y) IN RELATION B:

4 ADD (x,y) TO RELATION R

The imperative transformation is the equivalent of moving the proposition to the beginning of the rule

in the Datalog code:

1 R(x,y)  P(), A(x,z), B(z,y).

If the proposition does not hold, then no loops will be executed at all. The number of steps in this case

is reduced from O(|A| · |B|) to O(1). If the proposition does hold, then there is no impact on efficiency.

Therefore, pulling out propositions to the beginning of rules will always be either as good or better than

the original rule.

The situation is not limited to propositions, however. Suppose, instead, the rule was defined as:
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1 R(x,y)  A(x,z), B(z,y), Q(1,2).

Then the program will become:

1 FOR EACH TUPLE (x,z) IN RELATION A:

2 FOR EACH TUPLE (z,y) IN RELATION B:

3 IF 9 TUPLE (1,2) IN RELATION Q:

4 ADD (x,y) TO RELATION R

Again, the inner IF statement is independent of all other scans, and so can be moved to the beginning

of the rule with the same gains as earlier. The ability to push out the atom to the front with a net positive

impact was a simple consequence of the fact that the tuple being checked in Q was constant, and so can

be checked in constant time. Computing the result as early as possible is hence advantageous.

We generalise the approach even further by considering an example with no constants.

1 R(x,y)  A(x,z), B(z,w), C(w,y), E(x,w).

The corresponding imperative code is:

1 FOR EACH TUPLE (x,z) IN RELATION A:

2 FOR EACH TUPLE (z,w) IN RELATION B:

3 FOR EACH TUPLE (w,y) IN RELATION C:

4 FOR EACH TUPLE (x,w) IN RELATION E:

5 ADD (x,y) TO RELATION R

Observe that the outermost loop, scanning relation A, fixes the values of x and z for the inner loops it

contains. Thus, the values of y and z are, for all intents and purposes, ‘constant’ for the inner loops.

Consider the scan for tuples (x,w) in relation E on line 4. Notice that the value of x is fixed by the

scan of A in the outermost loop, while the value of w is fixed by the scan of relation B. The for loop is

therefore actually a check for a fixed tuple (x,w) in E. The imperative code is hence equivalent to:

1 FOR EACH TUPLE (x,z) IN RELATION A:

2 FOR EACH TUPLE (z,w) IN RELATION B:

3 FOR EACH TUPLE (w,y) IN RELATION C:
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4 IF 9 (x,w) IN RELATION E:

5 ADD (x,y) TO RELATION R

Although w is fixed, the same cannot be said for the scan over relation C, as y is still free to take on

any value. Note that relation C nevertheless does not introduce any new variables that E depends on.

While it does use w, w is introduced and bound to a fixed value earlier on, by B. Hence, we can swap the

conditional check on E and the scan over C to produce:

1 FOR EACH TUPLE (x,z) IN RELATION A:

2 FOR EACH TUPLE (z,w) IN RELATION B:

3 IF 9 (x,w) IN RELATION E:

4 FOR EACH TUPLE (w,y) IN RELATION C:

5 ADD (x,y) TO RELATION R

Again, this is always a beneficial transformation; the conditional takes constant time, while the scan

is linear in C in the worst-case. Bubbling the conditional upwards does not affect the binding of later

variables either, as no new variables are introduced.

We therefore have a transformation guaranteed to always improve a program: if an atom in a rule has

all its variables already bound to a value, then it should be pushed to the earliest point in the rule such

that its variables remain bounded. In other words, execute the atom just after the last of its variables is

bound.

The technique exploited variable binding information to extrapolate information about the size of certain

scans; namely, if all arguments of an atom are bound, then the effective scan size is 1 - an existential

check - regardless of actual relation size. Without knowledge of relation sizes and data distribution both

within and between relations, however, no such guarantee of optimality can be obtained for general rules.

The use of heuristics to estimate the optimality of a join order in such instances, as done in the database

world, is hence beneficial to produce a more generally applicable transformer. Note that the applicability

of the transformer is not limited to the situation where the user provides a non-optimal literal ordering.

Some optimisations, such as inlining, can manipulate existing rules by adding, removing, or altering

body literals. An automated scheduling transformer can hence cater for changes introduced by program

transformations.
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3.5.2 Conditions

The reordering transformation applies to all valid Datalog programs. The transformation is only semi-

automatic, however, as a heuristic must be chosen. Note that functors in Datalog rules are typically

replaced with new variables in practice, constrained to the value of the functor. Functors therefore do

not need to be treated differently to other terms.

3.5.3 Algorithm

For the algorithm, we assume that we have a defined cost-metric hcost, based on some choice of heuristic.

hcost takes in an arbitrary atom and the current environment of bound variables, and returns an integer

representing the associated cost of choosing that atom next in our join. Lower costs imply a higher

priority. Possible heuristics are described in the next subsection.

For simplicity, we take a greedy approach to determining the ‘optimal’ join order. The algorithm adds in

the atoms to the clause one by one, always choosing the atom that minimises the cost at that point given

the current environment of bound variables.

The algorithm is a local transformation on each rule. The only change is the ordering of atoms within

each clause.

Algorithm 9 Applying a scheduling heuristic to a program
Given: a Datalog program P , and a cost-metric hcost defined on all possible atoms
Output: transforms P into a semantically equivalent program P

0 with the body literals of each clause
rearranged based on the heuristic

1: procedure REORDERBODYATOMS(P ,hcost)
2: for each relation R 2 P do
3: for each clause C 2 R do
4: atoms getBodyAtoms(C)
5: remove all body atoms from C

6: boundV ariables ;
7: while atoms is not empty do
8: a atom in atoms that minimises hcost(a, boundV ariables)
9: add a to C

10: add variable arguments in a to boundV ariables

11: remove a from atoms
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3.5.4 Proposed Heuristics

We now propose a number of possible heuristics to use, and justify why the use of each heuristic may

(or may not) be appropriate when working towards an optimal join order. Each heuristic is described by

a cost-metric, defined on each possible atom appearance. As described in the algorithms section above,

the heuristic prioritises atoms by minimising the cost-value of the next atom in a greedy fashion, taking

into account the variables bound so far.

If two atoms have equal priority for a given metric, then the left-most atom in the original program

will be chosen. The ordering provided by the user in the original program is hence still taken into

consideration as the default option when applying the transformer.

For each heuristic, we will define the cost-metric on an arbitrary atom a(x1, . . . , xn), given a set of

bound variables B.

3.5.4.1 null: Left-to-Right

The null transformer prioritises atoms entirely based on the order already given in the input program.

The cost of an atom under the null heuristic is hence:

hnull(a(x1, . . . , xn), B) := 0

Each atom is given equal weight. As the original order is prioritised in the case of equal cost, the

heuristic will not affect the program.

3.5.4.2 all-bound: Completely Bound Atoms

The all-bound transformer prioritises atoms with all arguments bound. Recall from the motivation

section above that any atom with all its arguments bound requires constant time to process, and that

prioritising such atoms will always result in a better or equally efficient program. The cost-metric is

hence defined by:

hall-bound(a(x1, . . . , xn), B) :=

8
><

>:

0 xi 2 B, 8i 2 {1, . . . , n}

1 otherwise
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Thus, all completely bound atoms are given a bottom (equal) cost of 0, hence having top priority, while

other atoms are given a higher cost of 1.

3.5.4.3 max-bound: Maximal Number of Bound Arguments

The max-bound transformer prioritises atoms with the maximal number of bound aguments. The

metric is motivated by the likely correlation between the number of bound arguments and a decrease in

relation size: the more arguments that are fixed for an atom, the more the relation size is cut down, and

so the smaller the resultant join. Thus, the assumption of this heuristic is that the atoms with the most

bound arguments have been cut down the most, and so are most suitable as the next choice.

Note that the produced ‘optimal’ join based on this metric is not actually optimal in all cases. As a

simple example, consider the heuristic applied to the following rule:

1 R(x,y)  A(x,z), P(), B(z,y).

All atoms in the rule initially have the same number of bound arguments (zero), and so the original

left-most atom, A(x,z), is chosen by default as the first atom in the resultant ordering. x and z are

now bound, so P() has zero bound arguments, while B(z,y) has one. Thus, B(z,y) is chosen as the

next atom. The resultant rule after reordering is hence:

1 R(x,y)  A(x,z), B(z,y), P().

But above we have shown that propositions - or, more generally, atoms with all arguments bound -

should always be chosen first. Although this indicates an issue with the nature of the heuristic itself, we

tweak the metric slightly to take into consideration the case where all arguments are bound.

The corresponding cost-metric is hence:

hmax-bound(a(x1, . . . , xn), B) :=

8
><

>:

�1 xi 2 B, 8i 2 {1, . . . , n}

�k otherwise

where k is the number of bound arguments in a(x1, . . . , xn). The higher the number of bound arguments

k, the lower the cost �k is, the more priority it is given.
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3.5.4.4 max-ratio: Maximal Ratio of Bound Arguments

The issue discussed with the previous max-boundmetric hints that just the number of bound arguments

in an atom may not be an accurate measure of relation size. Nevertheless, we know that atoms with all

arguments bound should always have maximal priority. On the other hand, atoms with only unbound

arguments are not constrained in size by the bound variables so far, and so, knowing nothing else of the

relations, are unlikely to be a good candidate.

We hence alter the metric to take into account the proportion of bound arguments, relative to the number

of arguments the atom actually has. Thus, atoms with most of their arguments bound are likely to be

good next candidates; most arguments being bound implies most fields have been constrained for the

atom.

We hence define the metric as:

hmax-ratio(a(x1, . . . , xn), B) := �k

n

where k is the number of bound arguments in a(x1, . . . , xn). The higher the proportion k
n of bound

atoms, the lower the cost � k
n , the higher the priority of the atom. Note that maximising the ratio of

bound arguments is equivalent to minimising the ratio of free arguments.

Again, though more natural than the previous metric, this heuristic is not guaranteed to give the optimal

ordering in all situations. For example, consider the following program:

1 R(x,y)  A(x,z), C(z,y,y,y), B(z,y).

The reordering strategy will transform the program into:

1 R(x,y)  A(x,z), B(z,y), C(z,y,y,y).

Suppose, however, that the tuples (↵,�, �, �) in relation C are distributed such that, given the first column

↵, the triple (�, �, �) is uniquely identified. That is, C is a unique function of its first argument. Suppose

further that there are hundreds of possible values for the second argument given the first argument for

each tuple in B. Then, joining on B before C will involve scanning hundreds of possible values for y

before performing an existential check on C. On the other hand, joining on C before B means only one
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value for y will need to be checked, and then an existential check is performed on B. The first ordering

is hence more optimal in this scenario. Note, of course, that this is entirely dependent on the data

distribution in a particular run; in another situation, the produced ordering may be significantly more

effective than the initial. The example highlights the importance of understanding the data distribution

in the choice of a heuristic.

3.5.4.5 least-free: Minimal Number of Bound Arguments

Our final heuristic shifts the perspective from bound arguments to free arguments - that is, arguments

not yet bound by a previous atom. The idea is to minimise the number of free arguments introduced

by our next atom. To motivate this, observe that each introduced variable adds a new dimension to our

search space. Consequently, the more free arguments introduced by our chosen atom, the more degrees

of freedom the search space has. By minimising the number of free arguments, we hence minimise the

dimensionality of our search.

The corresponding cost-metric is:

hmax-ratio(a(x1, . . . , xn), B) := f

where f is the number of free arguments: arguments xi in a(x1, . . . , xn) with xi /2 B.

Unlike the max-bound heuristic above, the least-free heuristic encapsulates the all-bound

principle that fully bound atoms should be prioritised over all others. First, note that f � 0 in all cases,

as we cannot have a negative number of free arguments. Now, f = 0 if and only if there are no free

variables, which is true if and only if all arguments are bound. Thus, the lowest cost is obtained if and

only if the atom is maximally bound. Maximally bound atoms are hence prioritised, as needed.

Regardless, this heuristic may again not be ideal in certain cases, due to a lack of complete knowledge

of the domain. In particular, the counterexample shown in the max-ratio subsection above still holds

for the same reasons.
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3.5.5 Implementation

The transformation was implemented as a new semi-automatic AST transformation in the SOUFFLÉ

Datalog evauation engine. The transformer is called the ReorderLiteralsTransformer. Users

can define the heuristic to use by passing in a ‘SIPS’ (Sideways Information-Passing Strategy) option to

the compiler with the appropriate value, using the key-value pragma construct implemented in SOUFFLÉ.

The term SIPS is an homage to the magic-set transformation (Bancilhon et al., 1985), discussed in

the background section. If a SIPS is not provided, then SOUFFLÉ should default to the all-bound

heuristic, as it is guaranteed to be as good as or better than the input ordering.

3.6 MinimiseProgram: Clausal Bijective Equivalence

A primary source of inefficiency in the execution of a bottom-up Datalog program is the computation of

unnecessary tuples (Bancilhon et al., 1985). Tuples generated in an iteration of the bottom-up procedure

are deemed unnecessary if they do not contribute to the query, or they have already been generated

earlier in the program. While transformations like magic-set or existential reductions aim to eliminate

non-contributing tuples, redundant tuple generation can remain a significant issue.

One major contributing factor to repeated tuple generation is the existence of redundancy in the for-

mulated program. For example, a subset of clauses defined for a relation may actually be semantically

subsumed by another clause. In such cases, the redundant clauses are unnecessary, and will not con-

tribute to the output. Nevertheless, the redundant clauses will be evaluated, hence serving only as a

hindrance to evaluation efficiency. It is therefore of interest to eliminate such redundancies in programs.

Redundancies in Datalog programs can be eliminated through the development of a program-minimising

transformation. The scope of the transformation can be quite general, potentially aimed at removing

superfluous:

• atoms, which are equivalent to other atoms within a clause

• clauses, which are equivalent to other clauses in the same relation

• relations, which are equivalent to other relations
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There are therefore benefits in developing a program-minimising transformation. Our focus in this sec-

tion will be on eliminating redundant clauses. Previous work has shown, however, that minimising pro-

grams under general equivalence is undecidable (Shmueli, 1993; Sagiv, 1988). Moreover, the fallback

equivalence definition, uniform equivalence (Sagiv, 1988), also becomes undecidable in the presence of

functors. Despite the theoretical roadblock, we push onwards by reducing our requirement of clausal

equivalence to a much stricter form: clausal bijective equivalence.

We define clausal bijective equivalence as follows:

DEFINITION. Let C1 and C2 be two distinct clauses of the form:

C1 : A( ~x0) R1( ~x1), . . . , Rn( ~xn).

C2 : B(~y0) S1(~y1), . . . , Sm( ~ym).

We say that C1 and C2 are bijectively equivalent if and only if there exists:

• a permutation ⇡ : {1, . . . , n}! {1, . . . ,m}, and

• a bijection ↵ : V ar(C1)! V ar(C2), where V ar(Ci) is the set of variables in Ci

such that applying ⇡ and ↵ to the body literals and variables of C2 respectively syntactically produces

C1. That is,

B(↵(~y0)) S⇡�1(1)(↵( ~y⇡�1(1))), . . . , S⇡�1(m)(↵( ~y⇡�1(m))) ⌘ C1, syntactically

Informally, two clauses C1 and C2 are said to be bijectively equivalent if we can reorder the body literals

of C2 and rename its variables such that it looks identical to C1. As there are only a finite number of

body-literal permutations and variable renamings possible, a check for bijective equivalence is trivially

decidable. To achieve decidability, the generality of the equivalence check is sacrificed; some clauses not

bijectively equivalent are still equivalent in the general sense. In essence, clausal bijective equivalence

produces cruder equivalence classes; as we refine our notion of equivalence, these equivalence classes

begin to merge.

Checking the bijective equivalence of clauses within a given relation hence provides a basis for pro-

gram minimisation techniques aimed at reducing program redundancies. Given a means for checking
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clausal equivalence, program-minimisation can be extended to check for redundant relations, or even

intraclausal redundancies (that is, superfluous body literals within a clause). We defer such extensions

to future work, detailed in Chapter 6.

3.6.1 Motivation

Consider the definition of the following relation a in a Datalog program:

1 .decl a(x:number, y:number)

2 a(x,y)  b(x,z), c(z,y).

3 a(x,y)  b(x,z), c(z,y).

4 a(x,y)  d(x,y).

Note that the first rule is repeated, and is hence redundant. The impact is immediately illustrated when

the produced imperative code is analysed.

1 FOR EACH TUPLE (x,z) IN RELATION b:

2 FOR EACH TUPLE (z,y) IN RELATION c:

3 ADD (x,y) TO RELATION a

4

5 FOR EACH TUPLE (x,z) IN RELATION b:

6 FOR EACH TUPLE (z,y) IN RELATION c:

7 ADD (x,y) TO RELATION a

8

9 FOR EACH TUPLE (x,y) IN RELATION d:

10 ADD (x,y) TO RELATION a

The total number of tuples scanned is 2|b||c|+ |d|. The relation a is a set of tuples, however, and so the

second for loop is entirely useless. Eliminating it reduces the number of tuples scanned to |b||c| + |d|.

Thus, deleting the second rule in the original definition of the relation a can have a significant effect on

computational efficiency.

The repeated rule may not be syntactically identical, however. For example, consider the following

modified definition of the relation a:

1 .decl a(x:number, y:number)



3.6 MINIMISEPROGRAM : CLAUSAL BIJECTIVE EQUIVALENCE 74

2 a(x,y)  b(x,z), c(z,y).

3 a(x,y)  c(z,y), b(x,z).

4 a(x,y)  d(x,y).

Declaratively, reordering body atoms has no effect on the satisfiability of the body of the clause. Con-

sequently, the first two rules are still equivalent. The redundancy of the second clause can also be seen

through the produced imperative code:

1 FOR EACH TUPLE (x,z) IN RELATION b:

2 FOR EACH TUPLE (z,y) IN RELATION c:

3 ADD (x,y) TO RELATION a

4

5 FOR EACH TUPLE (z,y) IN RELATION c:

6 FOR EACH TUPLE (x,z) IN RELATION b:

7 ADD (x,y) TO RELATION a

8

9 FOR EACH TUPLE (x,y) IN RELATION d:

10 ADD (x,y) TO RELATION a

The sole difference between the first two loop chunks is the inverted order of the for loops. Swapping the

order of the for loops in a loop chunk will clearly not affect the tuples added into a, however; statements

are only executed in the deepest level of the loop chunk. We hence achieve the same gains eliminating

the second rule as we did in the first case. As shown in Section 3.5, however, different orderings can

have significant impacts on evaluation efficiency, despite declarative equivalence. Consequently, care

must be taken in choosing the correct clause to eliminate, or another program-rewriting transformation

must be run to mitigate the issue.

Repeated rules can be even more complex to identify. For example, consider a further adjustment to the

definition of a:

1 .decl a(x:number, y:number)

2 a(x,y)  b(x,z), c(z,y).

3 a(u,v)  c(k,v), b(u,k).

4 a(x,y)  d(x,y).
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Again, permutation is inconsequential in the declarative world, and so the program is semantically equiv-

alent to:

1 .decl a(x:number, y:number)

2 a(x,y)  b(x,z), c(z,y).

3 a(u,v)  b(u,k), c(k,v).

4 a(x,y)  d(x,y).

The first two rules are still not syntactically identical. They can be made to be, however, through a

renaming of variables in the second rule. In particular, renaming u and v to x and y respectively

transforms the program into:

1 .decl a(x:number, y:number)

2 a(x,y)  b(x,z), c(z,y).

3 a(x,y)  b(x,z), c(z,y).

4 a(x,y)  d(x,y).

We have not altered the variable bindings in any way, only the name used to identify them. As the

names used are irrelevant, provided that they are distinct, program semantics have again not changed.

Imperatively, the loop chunk is transformed from:

1 FOR EACH TUPLE (u,k) IN RELATION b:

2 FOR EACH TUPLE (k,v) IN RELATION c:

3 ADD (x,y) TO RELATION a

to this:

1 FOR EACH TUPLE (x,z) IN RELATION b:

2 FOR EACH TUPLE (z,y) IN RELATION c:

3 ADD (x,y) TO RELATION a

Variable renamings are similarly fine in the imperative world. The second rule can hence again be

eliminated, producing the same efficiency gains.
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Therefore, by finding clauses that are bijectively equivalent - that is, syntactically identical up to body-

literal permutation and variable renaming - we can eliminate large loop chunks, leading to potentially

significant efficiency gains, particular in evaluation time.

3.6.2 Conditions

The bijective equivalence check applies to pairs of clauses within the same relation. For simplicity, we

limit the equivalence check to clauses with no negation or constraints. In the presence of constraints,

particularly symmetric constraints like equality, the bijective equivalence check becomes more nuanced.

Thus, the focus of the transformation is only on clauses with positive body atoms, whose arguments are

either constants or variables.

3.6.3 Algorithm

The transformation will iterate through all relations. For each relation R, the rules defined for R will

be partitioned into equivalence classes over ⇠, where the equivalence relation ⇠ is defined to be the

bijective equivalence notion described earlier. That is, C1 ⇠ C2 if and only if there exists a permutation

of the body atoms of C2 such that C2 is syntactically identical to C1, up to variable renaming. Once the

clauses of the relation have been partitioned in this way, only one rule needs to remain per class, as all

clauses in the same class compute the same tuples. Consequently, all but one can be deleted from the

program.

The core step of the process is checking clausal bijective equivalence: given two clauses C1 and C2, is

C1 equivalent to C2 under bijective equivalence? To check this, we need to find:

• A permutation ⇡ of the body atoms of C2, and

• A variable renaming function ↵ on the variables in C2

such that, after applying both ⇡ and ↵ to C2, C1 ⌘ C2 syntactically.

Recall that we have restricted the clauses we consider to those containing only positive atoms with no

constraints. Thus, the two clauses will be of the form:

C1 : A( ~x0) R1( ~x1), . . . , Rn( ~xn).
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C2 : B(~y0) S1(~y1), . . . , Sm( ~ym).

As a running example, we consider the following two rules r1 and r2, defined for the relation R:

1 r1 : R(x)  a(x), a(z), b(x,z).

2 r2 : R(k)  a(w), b(k,w), a(k).

3.6.3.1 ⇡: Enumerating Valid Permutations

We begin by traversing the search space of the body-atom permutation, ⇡. Note first that it is necessary

that the two clauses have the same length; that is, the same number of body literals. Otherwise, there is

no way to form C1 from C2 through only permutations and variable renamings. Therefore, n = m is a

necessary condition.

For simplicity, number the literals in each rule from 0 to n, going left to right from the head atom.

C1 : A( ~x0) R1( ~x1), . . . , Rn( ~xn).

C2 : B(~y0) S1(~y1), . . . , Sn( ~yn).

Each possible permutation is a bijection ⇡ : {0, 1, . . . , n} ! {0, 1, . . . , n} on the literals of C2, where

⇡(p) = q means that the literal in position p moves to position q. We can also intuitively think of the

assignment ⇡(p) = q as mapping the atom in position p in C2 to the atom in position q in C2. There are

(n + 1)! such permutations, however, so, although rule sizes are typically small in Datalog programs,

we aim to substantially restrict the search space.

First, the head atoms A and B are semantically unique: the evaluation engine will place all generated

tuples into those relations once the body is satisfied. As a result, no other literal can take the position of

the head atom. Head atoms are hence fixed, so ⇡(0) := 0 is necessary.

Now, relation names are static throughout the equivalence check. For the permutation to be valid, we

require that ⇡(p) = q ) relation_name(Sp) = relation_name(Rq). This is because the permuted atom

in C2 must map to the atom in the corresponding position in C1 when checking for syntactic equivalence

at the end. As ⇡(0) = 0 necessarily, the head atoms must have the same relation name. We hence require

B = A for the two clauses. The constraint is satisfied when only checking for bijective equivalence of
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clauses defined for the same relation. Moreover, we can now restrict our valid permutation space to

those which map atoms in C2 to same-relation atoms in C1.

To find all such permutations, we define a two-dimensional (n+1)⇥ (n+1) permutation matrix M as

follows:

80pn80qn,M [p, q] :=

8
>>>><

>>>>:

1 p = q = 0

1 relation_name(Sp) = relation_name(Rq), p 6= 0, q 6= 0

0 otherwise

Essentially, the row 0 and column 0 are entirely zeroes, except for the shared cell M [0, 0]. This is

because ⇡(0) = 0, which means that 0 can map to nothing else (hence, the rest of row 0 is filled with

zeroes), and that 0 can be mapped to by nothing else, as ⇡ is a bijection (hence, the rest of column 0 is

filled with zeroes).

We will now construct the permutation matrix M for our running example above. We are checking for

valid permutations of the literals in r2 into the form of r1. The first row and first column are immediate,

as the head atom is fixed. Now, row p looks at where the p
th literal in r2 can move to; that is, the

positions j where the j
th literal in r1 has the same relation name as the p

th literal in r2. For row 1, the

atom we are considering is a(w). We hence need to find all positions in r1 where the atom uses the

same relation a. In this case, positions 1 and 2 in r1 use the relation a, and so M [1, 1] = M [1, 2] = 1,

while M [1, 3] = 0. Similarly for row 3. Row 2, on the other hand, looks at relations in r1 using the

relation b. So, M [2, 3] = 1, while M [2, 1] = M [2, 2] = 0.

Thus, the permutation matrix for the running example is as follows:

Mr1,r2 =

0

BBBBBB@

1 0 0 0

0 1 1 0

0 0 0 1

0 1 1 0

1

CCCCCCA

Algorithm 10 describes the process of generating a permutation matrix for a given pair of clauses.
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Algorithm 10 Generating a permutation matrix for a pair of clauses
Given: Two clauses C1 and C2 with the same number of body atoms
Output: The corresponding permutation matrix

1: procedure CREATEPERMUTATIONMATRIX(C1, C2)
2: N  number of body literals in C1 (and C2)
3: permutationMatrix n⇥ n matrix filled with 0s
4: permutationMatrix[0, 0] 1
5: for each i 1 to N do
6: atomC2  i

th atom in C2

7: for each j  1 to N do
8: atomC1  j

th atom in C1

9: if GETRELATIONNAME(atomC1) == GETRELATIONNAME(atomC2) then
10: permutationMatrix[i, j] 1
11: return permutationMatrix

The matrix hence encodes which transpositions are valid in the definition of the permutation. The issue

is now extracting the valid permutations from the matrix.

A permutation ⇡ is possible through the matrix if and only if ⇡(p) = q )M [p, q] = 1 for all rows p 2

{0, 1, . . . , n}. To derive all such permutations, we begin with an empty permutation, and construct each

possible complete permutation by filling in the blanks from left to right. To demonstrate the concept, we

will apply it to the permutation matrix Mr1,r2 of the running example.

We begin with an empty permutation, represented as an empty array of the size of the permutation,

[⇤,⇤,⇤,⇤]. The element in index i represents which position item i will be moved to. For example, the

permutation ⇡ = [1, 2, 0] applied to the list ` = [a, b, c] will result in ⇡(`) = [c, a, b]. The permutation

matrix gives us the set of possible values for each index. Looking at the the 0th row of Mr1,r2 , the only

possible value for index 0 is 0. For index 1, the possibilities are 1 and 2, and so on. A valid permutation

⇡ is then any possible array [p0, p1, p2, p3] such that pi is a valid move for index i according to the

permutation matrix, with the added constraint that it is a bijection from {0, 1, 2, 3} into {0, 1, 2, 3},

by definition of a permutation. Since the domain and codomain are the same, and have finite size,

surjectivity and injectivity imply each other. It is hence sufficient (and necessary) to force each pi to be

distinct, as this gives us injectivity.

Starting with the empty permutation, we can choose a possibility for the leftmost index, necessarily 0

in this case, giving us the permutation [0,⇤,⇤,⇤]. We now need to choose a move for index 1. There

are two possibilities, 1 and 2. Since all possibilities must be traversed, we need to choose this non-

deterministically. The result is that we now branch out to two possible permutation prefixes: [0, 1,⇤,⇤]
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and [0, 2,⇤,⇤]. The process then continues on each permutation independently. The technique used

can be naturally modelled through a depth-first graph traversal. Due to the constraint that 0 always maps

to 0, we can always begin at a root node 0. For each possible move for the next index based on the

permutation matrix, we branch out to a separate child node, each representing a different move. This

gives us the following tree Tr1,r2 for the matrix Mr1,r2 :

0

1 2

3 3 

1 2 1 2

FIGURE 3.7. Tree representation Tr1,r2 of permutation matrix Mr1,r2

Each path down the tree now represents a possible move combination. In this case, we get the arrays

[0, 1, 3, 1], [0, 1, 3, 2], [0, 2, 3, 1], and [0, 2, 3, 2]. Figure 3.8 illustrates the path that gives us the permuta-

tion [0, 1, 3, 2].

0

1 2

3 3 

1 2 1 2

FIGURE 3.8. Path in Tr1,r2 that produces the permutation [0, 1, 3, 2] from Mr1,r2

We have not yet considered the constraint that each value in the array must be unique. We can alter

our depth-first graph search to discard a path we are travelling on as soon as a repeated index is found.
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Figure 3.9 illustrates the branch pruning that can be performed to discard unwanted permutations. The

possible permutations are then exactly [0, 1, 3, 2] and [0, 2, 3, 1].

0

1 2

3 3 

1 2 1 2

FIGURE 3.9. Possible paths down Tr1,r2 after pruning

To avoid the exponential branching out factor due to the non-determinism, we can merge the identical

nodes on each level. Each level i then only contains mi nodes, where mi  length(⇡) is the number of

possible moves for index i.

0

1 2

3 

1 2

FIGURE 3.10. Tree representation of Mr1,r2 after merging identical nodes

The extraction problem is then reduced to finding paths from the root to the leaves in such a graph, with

the added uniqueness constraint. The devised algorithm, shown in Algorithm 11, uses the core idea of

a stack from the usual depth-first algorithm to create each possible path, backtracking when a repeated

number is found during the traversal.
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Algorithm 11 Generating valid literal permutations
Given: Two clauses C1 and C2 with the same number of body atoms
Output: A set of valid permutations of the body atoms of C2

1: procedure GENERATEPERMUTATIONS(C1, C2)
2: permutationMatrix CREATEPERMUTATIONMATRIX(C1, C2)
3: . create the list of valid moves
4: validMoves ;
5: for each i 0 to n do
6: for each j  0 to n do
7: if permutationMatrix[i, j] == 1 then
8: append j to validMoves[i]

9: . begin extracting the valid permutations
10: currentPermutation []
11: seenPermutations ;
12: currentIdx 0
13: S  empty stack
14: push validMoves[0] onto S

15: while S is not empty do
16: if currentIdx == n then
17: . permutation done, add it to list of valid permutations
18: add currentPermutation to seenPermutations

19: remove last element of currentPermutation

20: decrement currentIdx
21: continue
22: possibleMoves pop from S

23: if possibleMoves is empty then
24: . backtrack!
25: decrement currentIdx
26: remove last element of currentPermutation

27: continue
28: . try the next possibility
29: nextPossibleMove possibleMoves[0]
30: push possibleMoves[1 :] to S

31: if nextPossibleMove is already in currentPermutation then
32: . can’t repeat values; skip!
33: continue
34: . otherwise, everything is fine
35: add nextPossibleMove to the end of currentPermutation

36: increment currentIdx
37: if currentIdx != clauseSize then
38: . add the set of valid moves for the next step
39: push validMoves[currentIdx] to the stack
40: return seenPermutations

We hence have an algorithm for generating a strict subset of all possible atom permutations. Although

the permutation list may still contain false-positives (that is, permutations that cannot be used to show
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equivalence), there are no false-negatives: if a permutation is not in the generated permutation set, then

it is impossible for it to be used to show bijective equivalence as defined above. Moreover, since it is

relatively rare for Datalog rules to contain several repeated body atoms in practice, the search space is

significantly reduced. Even with the simple running example above, where a relation name has been

repeated in the body, the number of valid permutations has been reduced from 4! = 24 to only 2.

3.6.3.2 ↵: Finding a Corresponding Variable Assignment

The next stage of the process is to determine if a given permutation ⇡ on the body atoms of C2 has

an associated variable renaming function ↵ on the variables of C2 such that the rules are syntactically

identical.

As the permutation ⇡ is given, we have a fixed ordering for how the literals will appear in C1 and

C2. For example, consider again the running example from above. We found two valid permutations,

⇡1 = [0, 1, 3, 2], and ⇡2 = [0, 2, 3, 1]. Recall that ⇡(p) = q means that the atom in position p will be

moved to position q in the clause. If the first permutation ⇡1 is applied to clause C2, we get the following

new pair of clauses:

1 r1 : R(x)  a(x), a(z), b(x,z).

2 r2 : R(k)  a(w), a(k), b(k,w).

Naturally, by construction of the permutation through the above process, atom relation names must

match up across the two clauses. We need to now only check that a valid variable renaming function

exists. Since the permutation fixes the ordering for the bijection check, variables appearing in the same

position in both clauses must be ‘equated’. In the head atom above, for instance, k must necessarily

be renamed to x. Moving on right in a similar manner, w must match up with x, k with z, k with x,

and w with z. Notice, however, that k must map to both x and z. But x and z are necessarily distinct

variables. We hence have a contradiction. Given this permutation, no variable renaming function is

hence possible to transform r2 to r1. We can therefore discard the permutation ⇡1 = [0, 1, 3, 2] as a

potential permutation in the bijective equivalence check.

On the other hand, consider the second permutation, ⇡2 = [0, 2, 3, 1]. The formed pair of clauses is then:

1 r1 : R(x)  a(x), a(z), b(x,z).

2 r2 : R(k)  a(k), a(w), b(k,w).
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The variable renaming approach, going left to right, then forces us to rename k to x, k to x, w to z, k to

x, and w to z. This time, we have a bijection with the variable renaming strategy from the variables in

r2 to the variables in r1 that preserves the bindings:

↵2 : {k,w}! {x,z}

with ↵2[k] = x and ↵2[w] = z.

A valid variable renaming function ↵2 hence exists for the given permutation ⇡2. Similarly, constants

must match up with equal constants; a variable cannot be mapped to a constant, and vice versa, as they

cannot be syntactically identical.

Algorithm 12 determines if a valid variable-renaming function exists for a given permutation.
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Algorithm 12 Checking whether a valid variable-renaming bijection exists
Given: Two clauses C1 and C2, and a permutation ⇡ on the atoms in C2

Output: Whether a variable-renaming bijection exists that transforms C2 into C1

1: procedure VARIABLERENAMEREXISTS(C1, C2, ⇡)
2: reorder the literals in C2 based on the permutation ⇡

3: variableMap empty map
4: for each variable v 2 C2 do
5: variableMap[v] null

6: for each i 0 to n do
7: atomC1  i

th atom in C1

8: atomC2  i
th atom in C2

9: arity arity(atomC1)
10: for each j  0 to arity do
11: argC1  j

th argument of atomC1

12: argC2  j
th argument of atomC2

13: if both argC1 and argC2 are constants then
14: if argC1 == argC2 then
15: return true
16: else if both argC1 and argC2 are variables then
17: existingMapping  variableMap[argC2]
18: if existingMapping == null then
19: . not set yet
20: variableMap[argC2 ] = argC1

21: else if existingMapping == argC1 then
22: continue
23: else
24: . contradictory mapping
25: return false
26: else
27: return false
28: . check if everything is covered
29: for each (in, out) 2 variableMap do
30: if out == null then return false
31: . everything matches
32: return true

3.6.3.3 ⇠: Checking Clausal Bijective Equivalence

Algorithm 11 finds all possible permutations of the literals in C2, while Algorithm 12 checks whether a

variable-renaming bijection exists corresponding to that permutation. Combining these two, we hence

have an algorithm for checking clausal bijective equivalence, shown in Algorithm 13.
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Algorithm 13 Checking clausal bijective equivalence
Given: Two clauses C1 and C2

Output: Whether the clauses are bijectively equivalent
1: procedure AREBIJECTIVELYEQUIVALENT(C1, C2)
2: if C1 and C2 do not belong to the same relation then return false
3: if C1 and C2 have a different number of body atoms then return false
4: possiblePermutations GENERATEPERMUTATIONS(C1, C2)
5: for each ⇡ 2 possiblePermutations do
6: if VARIABLERENAMEREXISTS(C1,C2,⇡) then return true

return false

For our running example, we have found a valid permutation and corresponding variable-renaming bi-

jection transforming the second clause into the first. Thus, the two clauses are bijectively equivalent.

3.6.3.4 Minimising a Program under Clausal Bijective Equivalence

The clausal bijective equivalence check can then be used to devise a transformation that works towards

minimising a program by deleting redundant clauses. To do this, we iterate through all clauses of all

relations, and create equivalence classes based on bijective equivalence. As all but one clause of each

equivalence class can be deleted, we need to only keep track of the representative of each equivalence

class as we go along. The algorithm is shown in Algorithm 14.

Algorithm 14 Minimising a program under clausal bijective equivalence
Given: a Datalog program P

Output: transforms P into a semantically equivalent program P
0 with all clauses redundant under bi-

jective equivalence deleted
1: procedure MINIMISEPROGRAM(P )
2: for each relation R 2 P do
3: equivalenceReps ;
4: for each clause C 2 R do
5: added false
6: for each CeqClass 2 equivalenceReps do
7: if AREBIJECTIVELYEQUIVALENT(C, CeqClass) then
8: added true
9: delete C from P

10: break
11: if not added then
12: add C to equivalenceReps
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3.6.4 Implementation

The transformation was implemented as a new AST transformation in the SOUFFLÉ Datalog evaluation

engine. The transformation is called the MinimiseProgramTransformer. The process is fully

automated, and was added to the main transformation pipeline.

Although the transformation was restricted to pure positive Datalog with no constraints, SOUFFLÉ has

many extra features, including functors and negation. Currently, the transformation ignores the check

for clauses not meeting the conditions. In the future, the algorithm can be extended to consider such

features.



CHAPTER 4

The Transformation Pipeline

Thus far, all transformations have been discussed as standalone rewrite procedures on an input Datalog

program. Although effective when individually applied, the potential benefits gained from their interac-

tion can already be seen from the previous chapter; the whole is greater than the sum of the parts. For

example, the singleton replacement procedure can lead to more opportunities for existential reduction,

while a program-minimising transformer may be able to eliminate redundant rules formed by the body

partitioner, and so on. The transformations may also be intertwined in more complex ways, or depen-

dent on volatile conditions for application. Devising a solid framework and pipeline for transformer

application is hence critical for maximising the gains of each transformation procedure when used in

concert.

In this chapter, we will describe the original transformation framework built into SOUFFLÉ and its limita-

tions. The discussion motivates the development of a meta-language for transformer application, where

the implemented transformers can be wrapped into so-called meta-transformers that allow more com-

plex interactions between transformations. Finally, we discuss the choices made in our application of

the meta-transformer concept into SOUFFLÉ to build a theoretically justified transformation pipeline.

4.1 SOUFFLÉ: The Existing Transformation Framework

In the background section, we mention that SOUFFLÉ has a very minimal transformation framework.

There are very few transformations, and all are just applied one after the other in sequence, exactly once

each. The bulk of the transformations deal with resolving syntactic sugar so that the next stage of the pro-

cess, translation into code for the Relational Algebra Machine (RAM), can occur. Such transformations

are hence essential for code correctness. Most deal with complex constructs in SOUFFLÉ, however, that

do not appear in regular Datalog code, such as aggregates, records, and components. As our research

focuses on conventional Datalog, we will not discuss such transformations, and instead will abstract

88
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them away into an overarching transformer henceforth dubbed the ResolveComplexConstructs

transformer. ResolveComplexConstructs will only need to be run once as soon as the Abstract

Syntax Tree (AST) is constructed for the input program.

There are a few relevant transformers in the original framework that will not be abstracted away:

ResolveAliases, RemoveEmptyRelations, RemoveRedundantRelations, and

RemoveRelationCopies.

4.1.1 Existing SOUFFLÉ Transformations

4.1.1.1 ResolveAliases

The ResolveAliases transformer resolves certain important constructs, such as solving equality

constraints among variables and constants, and replacing each functor appearance in an atom with a

variable and a corresponding equality constraint.

Although dealing more with syntactic sugar than optimality, we consider the transformer separate from

ResolveComplexConstructs above, as it deals with primitive Datalog constructs seen in most

dialects, such as equality constraints, that must still be resolved for the RAM stage to occur smoothly.

Alias resolution may be expected by later transformations, which themselves may produce a program

that requires the transformer to be run again, by, for example, introducing a new equality constraint.

ResolveAliases hence serves as a good example of a critical transformation that may need to be

rerun multiple times in a transformation pipeline, despite not directly optimising the program. The

original SOUFFLÉ transformation framework was very basic, however, and so only required it to be run

once, just after ResolveComplexConstructs.

4.1.1.2 RemoveEmptyRelations

As the name suggests, the RemoveEmptyRelations transformer removes relations containing no

rules or facts. Such relations contain no tuples, and so are trivially always ‘false’ values. The relations,

and all rules in which they appear in, can therefore be removed without consequence.

Since removing such relations may delete clauses, the transformation may have a cascading effect:

deleting empty relation A may cause the relation B, which uses A, to be empty, and so on. Interestingly,

however, the original SOUFFLÉ transformation framework ran the transformer only once. Resulting
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programs could therefore still contain empty relations. It is more appropriate to iteratively apply the

transformer until a fixpoint is reached; that is, until no more relations are deleted.

4.1.1.3 RemoveRedundantRelations

The RemoveRedundantRelations transformer removes all relations that do not contribute to the

output of the program. In effect, all relations that an output query does not directly or indirectly depend

on are deleted from the program. The transformation is a typical compiler optimisation in most lan-

guages. Only one pass is needed at a time, as deleting relations independent of an output query does not

affect any relations the output relations actually depend on.

4.1.1.4 RemoveRelationCopies

Finally, the RemoveRelationCopies transformer considers all relations R containing a single

clause, where the clause has the form:

R(x) S(x).

for some other relation S. The relation R is hence just a copy of the relation S, and performs no useful

computations. All appearances of R can then be replaced by S, and R can be deleted from the program.

Again, only one pass is needed at a time, as relation replacement cannot trigger the same condition for a

new relation.

4.1.2 The Original SOUFFLÉ Transformation Pipeline

As stated earlier, the SOUFFLÉ transformation pipeline involved simply running each transformation

exactly once in sequence. Since the transformers mostly did not perform complex program rewrites,

the resolving transformations, such as ResolveAliases, did not need to be rerun. Correctness was

therefore preserved in the output.

Program-optimising transformations did not flourish under such a regime, however. The limitations are

evident in even this simple set of pre-existing transformations. As mentioned in the RemoveEmptyRelations

subsection above, for example, there are some cases where relevant optimisation opportunities are

missed, simply because the transformation is only run once.
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Moreover, the original SOUFFLÉ framework was acceptable only due to the simple nature of the trans-

formations. There were very few of them, each was fairly standalone, and all should be applied to any

input program. It was natural to have a fixed order for the transformations, and execute them one at a

time just after parsing.

With the newly introduced transformations, however, there are no longer any guarantees of simplic-

ity. Complex transformations now exist, which can interact with each other in important ways. For

example, singleton replacement (ReplaceSingletonVariables) can allow some relations to be

reduced existentially (ReduceExistentials). Transformations may also now introduce new equal-

ity constraints, such as InlineRelations, which the ResolveAliases transformer must deal

with before moving onto the next transformer. If not handled appropriately, such constraints can lead to

a software-engineering nightmare, especially when new transformations are added, as well as a potential

for missed optimisation opportunities.

For usability and extension purposes, the added complexity hence motivates the introduction of a meta-

language to handle transformations on the AST level.

4.2 The Meta-Transformer Language

We now introduce a new, separate class of transformers, called meta-transformers. Rather than being

standalone transformers that execute a single transformation pass when applied to a program, meta-

transformers do not represent any new optimisation technique. Instead, a meta-transformer is comprised

of subtransformers, which are handled in a certain way depending on its semantics. To avoid confusion,

we will call the transformers discussed earlier base-transformers.

To allow a comfortable level of control over the base-transformers, we will devise several forms of

meta-transformers that may be useful in a general framework of program-rewriting transformations.

The main meta-transformers we will discuss are the PIPELINE transformer, the CONDITIONAL trans-

former, the WHILE transformer, and the FIXPOINT transformer. We will also introduce the NULL

meta-transformer, which can be of aid when deleting or interacting with complex transformer chains.

The PIPELINE Transformer: The PIPELINE transformer holds a vector of subtransformations.

When a PIPELINE transformer is executed, all subtransformers are executed in sequence. The sub-

transformers can be base-transformers, or meta-transformers themselves. An overarching main PIPELINE
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transformer can be used to contain all transformation runs that need to be executed on the program.

Therefore, in the end, only this transformation must be applied directly on an input program.

The CONDITIONAL Transformer: The CONDITIONAL transformer takes in a single subtransfor-

mation and a condition. If the condition holds when the CONDITIONAL transformer is executed on

the program, then the subtransformation is applied. Otherwise, no transformation is performed. The

subtransformer can again be either a base-transformer or a meta-transformer. An entire pipeline of

transformers can hence be conditionally executed with a simple interface.

The WHILE Transformer: The WHILE transformer is similar to the CONDITIONAL transformer, ex-

cept the transformation is reapplied to the program as long as the given condition holds.

The FIXPOINT Transformer: The FIXPOINT transformer takes in a single subtransformer, and exe-

cutes it until the program no longer changes. The subtransformer can again be either a base-transformer

or meta-transformer, and so entire series of optimising transformations can be executed in a looped

sequence until all optimisation opportunities for these transformers have been consumed.

The NULL Transformer: Finally, the NULL transformer is a trivial meta-transformer that takes in no

subtransformers, and performs no changes to the input program. The transformer can make interac-

tions with the pipeline more flexible, especially when a transformer should be replaced in-place without

affecting other parts of the chain.

The benefits of such a meta-transformation system can immediately be seen. For instance, the

RemoveEmptyRelations transformer can now be wrapped in a FIXPOINT meta-transformer to

overcome the issue of missed optimisation opportunities noted earlier. Moreover, the InlineRelations

transformer can be wrapped in a pipeline which holds the inlining transformer, followed by the

ResolveAliases transformer, to avoid potential RAM issues caused when introducing new equali-

ties. New transformations, possibly composed of several subtransformers, can also be added easily to the

main pipeline, or a subcomponent of the pipeline. Such transformers may be easier to implement. For

example, rather than implementing the full inlining algorithm, a transformation that performs a single

iteration could be wrapped in a fixpoint transformer.

Notice that the meta-transformers emulate constructs in common languages, such as conditionals and

loops. By combining the meta-transformers, more intricate control can be gained over the collection of

transformations. For example, wrapping a sequence of transformers in a pipeline allows us to reuse that
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sequence whenever needed, similar to the idea of a callable subroutine. The meta-transformers are also

beneficial in the sense that they add a layer of abstraction over the backend implementation, namely the

C++ backend in this case. Recall that we did not want to restrict our transformations to any specific

implementation of Datalog. The abstraction hence makes the transformation pipeline more portable to

other languages.

We have hence developed a language of meta-transformers that wrap around our set of base-transformers.

The meta-transformers were implemented as a separate class of transformers in the SOUFFLÉ system,

allowing us to replace the existing framework with a more powerful fine-tuned transformation interface.

4.3 Constructing the SOUFFLÉ Transformation Pipeline

The original SOUFFLÉ transformation pipeline applied the following in sequence:

ResolveComplexConstructs

ResolveAliases

RemoveEmptyRelations

RemoveRedundantRelations

RemoveRelationCopies

FIGURE 4.1. Original SOUFFLÉ transformation pipeline

We wish to now develop an effective pipeline incorporating the newly implemented transformations,

in such a way that the maximal set of optimisation opportunities are taken. To justify the developed

pipeline, the interactions between all transformers must be analysed.
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4.3.1 Transformer Dependencies

In this section, we investigate transformer dependencies by analysing each base-transformer individ-

ually, noting which other transformers may gain optimisation opportunities. We begin with the pre-

existing transformers.

ResolveComplexConstructs [COMPLEX]: This transformer must occur first, and does not need

to be applied again. We can safely place the transformer at the beginning of the pipeline, and move on.

ResolveAliases [ALIAS]: Alias resolution works only on the interior of clauses, and does not re-

move clauses or otherwise alter inter-relational interactions. Due to the handling of equivalence by the

current MinimiseProgram transformer, however, reducing the number of constraints might trigger

bijective equivalence between two clauses. As alias resolution may remove existing equality constraints,

the transformer should precede MinimiseProgram. Other transformations will not gain further opti-

misation opportunities.

RemoveEmptyRelations [EMPTY]: The transformer removes relations that are empty, along with

all clauses in which the empty relations appear. As removing clauses may cause other to be empty, the

transformer must be wrapped in a fixpoint meta-transformer. Removing empty relations may remove

clauses from other relations, so introduces new potential for:

• RemoveRelationCopies: certain relations may now only have one clause, of the form

a(x) b(x).

• ReduceExistentials: certain relations may have only appeared non-existentially within

a clause that is now deleted, and so can now be reduced.

RemoveEmptyRelations must hence precede these two transformations.

RemoveRedundantRelations [REDUN]: The transformer removes entire relations that are not

needed to compute the query. As removed relations are entirely independent of the query, the remaining

relations are not affected, and no further opportunities for optimisation are introduced.

RemoveRelationCopies [COPY]: The transformer removes ‘middle-man’ relations, and does not

introduce new avenues for optimisation.

We now move on to the transformers introduced in Chapter 3.
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ReorderLiterals [PERM]: Literal reordering only rearranges atoms within clauses. No other

transformation relies on literal ordering, so no further optimisation opportunities arise. However, lit-

eral reordering must occur whenever clauses are changed or added. The transformer should hence be

executed as the final transformation stage, and will not be discussed further.

InlineRelations [INLINE]: Inlining typically introduces equality constraints, and so must be

followed by ResolveAliases. Inlining may also cause clauses to become equivalent, and so

MinimiseProgram must eventually follow it. In case the user inlines a propositional relation,

PartitionBodyLiterals should also be run after inlining.

ReplaceSingletonVariables [SING]: Singleton variables may cause certain relations to be-

come existential, creating new opportunities for ReduceExistentials. ReplaceSingletonVariables

must therefore precede ReduceExistentials.

ReduceExistentials [EXIST]: Reducing existentials can only remove recursive rules. In the rare

event that a relation only contains recursive rules, RemoveEmptyRelations should be executed

afterwards. The same points mentioned in RemoveEmptyRelations also apply: relations may now

be copies of other relations, and the sole non-existential appearances of some relations may have been

removed. New optimisation opportunities may hence be introduced for RemoveRelationCopies,

as well as ReduceExistentials itself.

PartitionBodyLiterals [PART]: Partitioning body literals may result in the generation of sev-

eral equivalent relations. Optimising out such redundancies has not yet been implemented. The trans-

former hence does not introduce any new optimisation opportunities for other existing optimisations.

MinimiseProgram [MIN]: Finally, MinimiseProgram reduces the set of clauses, but only re-

moves redundant clauses. RemoveRelationCopies is the only transformer that may now have new

opportunities, as it relies on the number of clauses defined for a relation.

The dependencies between the transformers are illustrated in the graph in Figure 4.2. The nodes repre-

sent the transformations. An edge from a to b means transformation a may introduce new optimisation

opportunities for b, and so b should occur at some point after a in the pipeline. The dependencies there-

fore impose ordering constraints on the constructed pipeline. Transformers ResolveComplexConstructs

and ReorderLiterals are not shown, as they will always appear first and last in the pipeline respec-

tively, as mentioned above.



4.3 CONSTRUCTING THE SOUFFLÉ TRANSFORMATION PIPELINE 96

ALIAS

MIN

COPY

EMPTY

EXIST

REDUNINLINE

PARTSING

FIGURE 4.2. Dependencies between AST transformations implemented in SOUFFLÉ

As new transformers come into play or old transformers evolve in complexity with future work, the

dependencies will likely be affected. For example, if MinimiseProgram is extended to cater for

equivalent relations, then PartitionBodyLiterals will introduce for it a relevant optimisation

opportunity. In such a case, a new edge should be inserted from PartitionBodyLiterals to

MinimiseProgram in the dependency graph.

The edges in the graph already hint at the importance of considering transformer interactions when

developing an optimal framework of transformations. It is important to note that a lack of edges be-

tween nodes does not at all indicate that the transformers are independent, however. For example,

PartitionBodyLiterals will extract subclauses into new relations. The new extracted relations

may benefit more thoroughly by singleton replacement, using ReplaceSingletonVariables,

than the original program, due to a shift in the structure of the clauses. Nevertheless, it does not matter

if singleton removal occurs before or after body partitioning, and so a dependency edge is not required;

it is only important that both transformers are run at some point.

4.3.2 The Final Pipeline

Using the graph G in Figure 4.2, we can begin to devise a transformation pipeline for SOUFFLÉ. The

goal is a pipeline that produces a program such that no more optimisation opportunities exist for any

implemented transformation. We therefore base pipeline construction on the following conditions:

• All transformers should be applied at least once
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• If a transformer a is applied and makes a change to the program, then all transformations b

where the edge (a, b) is in the dependency graph G must eventually be applied

In an acyclic graph, pipeline construction is simple: a topological sorting algorithm on the graph will

produce an appropriate ordering of transformers. Unfortunately, the dependency graph G contains di-

rected cycles. For example, RemoveEmptyRelations contains a self-loop, and so must continu-

ously be applied. Once a program no longer changes after the application of a given transformer, how-

ever, further applications are unnecessary. A natural consequence is to wrap such cycles in FIXPOINT

meta-transformers, such that they are followed until there is no longer an impact on the program.

To construct the pipeline, we therefore begin by reducing all strongly-connected components in the

dependency graph into nodes that represent a wrapping fixpoint transformation. The idea is akin to

the construction of the Strongly-Connected Component (SCC) graphs developed by SOUFFLÉ to divide

programs into strata. The dependency graph after the reduction of strongly-connected components is

shown in Figure 4.3. Nodes with a bold outline indicate a component originating from a directed cycle,

which should therefore be wrapped in a fixpoint transformer.

ALIAS

MIN

COPY

REDUNINLINE

PARTSING

EMPTY+EXIST

FIGURE 4.3. SCC graph corresponding to dependency graph in Figure 4.2

The result is a directed acyclic graph, with possible fixpoint nodes. The reduction means we can now

apply a simple topological sorting algorithm on the graph. Any solution corresponds to a valid trans-

formation pipeline of the shown transformations. One such solution is shown in Figure 4.4. Node

numberings indicate the order of application.
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1
REDUN

2
INLINE

3
ALIAS

4
PART

5
MIN

8
COPY

6
SING

7
EMPTY+EXIST

FIGURE 4.4. SCC graph with nodes numbered to show a valid topological ordering

Adding in ResolveComplexConstructs and ReorderLiterals at the start and end respec-

tively, and wrapping RemoveEmptyRelations and ReduceExistentialRelations in a com-

mon fixpoint transformer, we have a valid transformation pipeline for SOUFFLÉ. The final pipeline is

shown in Figure 4.5.
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ResolveComplexConstructs InlineRelations

ResolveAliasesPartitionBodyLiteralsMinimiseProgram

ReplaceSingletonVariables

RemoveRelationCopies

RemoveRedundantRelations

RemoveEmptyRelations ReduceExistentials

ReorderLiterals 

Fixpoint

START

END

FIGURE 4.5. Final SOUFFLÉ transformation pipeline, based on the dependency analysis



CHAPTER 5

Experiments and Results

The transformations have until this point only been justified from a theoretical standpoint. In this chapter,

we move on to demonstrating the impact of each of these transformations on both synthesised and

real-world Datalog programs and fact sets. We aim to achieve an understanding of the impact of each

transformation, when run both individually and in concert, by answering the following experimental

questions.

(Q1) What is the impact of each transformer on runtime and memory when applied on:

(i) synthesised programs?

(ii) real-world programs?

(Q2) How do these impacts scale with larger input datasets?

(Q3) How do the efficiency impacts of the automated transformations compare to semi-automated

transformations requiring manual annotations?

(Q4) How do the transformers perform when working together, rather than as standalone transfor-

mations?

For our experimental setup, we use an Intel Xeon Gold 6130 CPU @ 2.10GHz server running Fedora 27

with 192 GB of memory. To compile the SOUFFLÉ C++ executables, we use GCC 7.3.1 with the -O3

flag. For each experiment, evaluation time in seconds and memory usage in megabytes is recorded. A

timeout of 15 minutes was chosen for all experiments. We use maximum resident set size to measure

memory. A limitation for resident set size is that it overapproximates for low memory usage, and so a

plateau for lower memory may occur. As our focus is on the trend for larger input sizes, such differences

can be safely ignored.

100
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5.1 Synthesised Benchmarks

We begin with an empirical investigation of the effects of our transformations on hand-crafted Datalog

programs. For each transformation, we present a simple Datalog program with an optimisation op-

portunity specially targeted to the transformer in question. The programs will have a variable fact set,

allowing tests to range in size. Throughout this section, N denotes the size of the input fact set. We will

demonstrate the performance of each transformation on its corresponding Datalog program for input fact

sizes of increasing orders of magnitude. Results in this section will be shown on a logarithmic scale.

Recall that some transformations require manual user annotations to be enabled. We therefore split the

analysis up into automated transformations - PartitionBodyLiterals, ReduceExistentials,

ReplaceSingletonVariables, and MinimiseProgram - and semi-automated transformations

- ReorderLiterals and InlineRelations. When testing each transformation, all others will

be disabled to illustrate individual performance benefits. We conclude the section by investigating the

effects of the transformations in concert on a separate benchmark.

5.1.1 Automated Transformations

5.1.1.1 PartitionBodyLiterals

The synthesised program is as follows:

1 .decl jailed(x:number)

2 .input jailed

3

4 .decl thief(x:number)

5 .input thief

6

7 .decl person(x:number)

8 .input person

9

10 .decl worried(x:number)

11 worried(x) :- person(x), !jailed(x), thief(y), !jailed(y).

12

13 .output worried
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The optimised program has the form:

1 .decl jailed(x:number)

2 .input jailed

3

4 .decl thief(x:number)

5 .input thief

6

7 .decl person(x:number)

8 .input person

9

10 .decl exists_thief()

11 exists_thief() :- thief(y), !jailed(y).

12

13 .decl worried(x:number)

14 worried(x) :- exists_thief(), person(x), !jailed(x).

15

16 .output worried

With regards to input facts:

• INPUT (person) = {1, . . . , N}

• INPUT (thief) = {x 2 {1, . . . , N} | x ⌘ 0 mod 3}

• INPUT (jailed) = {x 2 {1, . . . , N} | x ⌘ 0 mod 6}

For each possible unjailed person, the unoptimised program must redundantly recompute the value of

exists_thief, which scans through every element in the thief relation - O(N) time. Thus, O(N)

extra time is spent per unjailed person. While the optimised program will scale linearly, the optimised

program will hence scale quadratically with the input size. As the same amount of information is stored

per relation (ignoring the possible single extra tuple stored in exists_thief) and the same atoms are

being checked, the memory usage is expected to be similar for both programs.

The performance of the Datalog program when run on SOUFFLÉ is shown in Figure 5.1.
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(A) Evaluation time (B) Memory usage

FIGURE 5.1. SOUFFLÉ performance on synthesised Datalog program with the
PartitionBodyLiterals transformer toggled on or off

As expected, the optimised program scales much better. The evaluation time of the program is near

instantaneous for both optimised and unoptimised versions up until N = 104. While evaluation time

remains at a subsecond level when the transformer is toggled on, the time shoots up for the unoptimised

version, before timing out at the N = 106 point. Memory is fairly constant across all fact sizes where the

unoptimised version does not time out, except for the N = 104 case, where the optimised version uses

around 23% less memory. We speculate that this is a consequence of memory management techniques

for large-size relations in the optimised data-structures in the backend.

5.1.1.2 ReduceExistentials

The synthesised program is as follows:

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1) :- natural(x), x < $N$.

4

5 .decl query()

6 query() :- natural(_).

7

8 .output query



5.1 SYNTHESISED BENCHMARKS 104

The optimised program has the form:

1 .decl natural(x:number)

2 natural(0).

3

4 .decl query()

5 query() :- natural(_).

6

7 .output query

It is clear that the original program will likely scale linearly with the input fact size, while the optimised

program will take constant time and memory, as it is independent of N .

The performance of the Datalog program when run on SOUFFLÉ is shown in Figure 5.2.

(A) Evaluation time (B) Memory usage

FIGURE 5.2. SOUFFLÉ performance on synthesised Datalog program with the
ReduceExistentials transformer toggled on or off

As expected, time and memory were constant and relatively extremely low for the optimised program.

Conversely, the unoptimised program seems to scale roughly linearly with input size for both time and

memory usage. A dramatic constrast between the two programs is hence increasingly evident as input

size increases.
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5.1.1.3 ReplaceSingletonVariables

The synthesised program is as follows:

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1) :- natural(x), x < $N$.

4

5 .decl a(x:number)

6 a(0) :- natural(x), natural(y).

7

8 .decl query(x:number)

9 query(x) :- a(x).

10

11 .output query()

The optimised program has the form:

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1) :- natural(x), x < $N$.

4

5 .decl a(x:number)

6 a(0) :- natural(_), natural(_).

7

8 .decl query(x:number)

9 query(x) :- a(x).

10

11 .output query()

The imperative code for relation a in the original program will consist of a nested for loop:

1 FOR EACH TUPLE (x) IN RELATION natural:

2 FOR EACH TUPLE (y) IN RELATION natural:

3 ADD (0) TO RELATION a
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while the optimised version will have the form:

1 IF 9 TUPLE IN RELATION natural:

2 IF 9 TUPLE IN RELATION natural:

3 ADD (0) TO RELATION a

As natural has size N , the evaluation time of a will hence likely remain constant for the optimised

program, while scaling quadratically for the unoptimised. Memory should be similar for both, as no sig-

nificant extra storage is required, though the added nested loop may introduce some memory overhead.

Note that the natural relation itself must still be computed for both, taking O(N) time and space, so

the optimised program should still scale linearly in size and memory with input size.

The performance of the Datalog program when run on SOUFFLÉ is shown in Figure 5.3.

(A) Evaluation time (B) Memory usage

FIGURE 5.3. SOUFFLÉ performance on synthesised Datalog program with the
ReplaceSingletonVariables transformer toggled on or off

As expected, the optimised program scales linearly, while the unoptimised blows up, before timing out

at the N = 106 stage. Memory is fairly constant and equal for both program, until the N = 104 point,

where some extra overhead seems to come into play. The overhead is similar to that seen in the results for

PartitionBodyLiterals at the same point, and we again speculate that this is a consequence of

memory management techniques from the optimised data-structures used. Note that, after the N = 106

point, the memory usage of the program increases; this is likely a result of the input facts beginning to

dominate memory usage, rather than the computation itself.
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5.1.1.4 MinimiseProgram

The synthesised program is as follows:

1 .decl a(x:number,y:number)

2 .input a

3

4 .decl b(x:number,y:number)

5 .input b

6

7 .decl c(x:number, y:number)

8 c(x,y) :- a(x,z), b(z,y).

9 c(s,t) :- b(u,t), a(s,u).

10

11 .output c

The optimised program has the form:

1 .decl a(x:number,y:number)

2 .input a

3

4 .decl b(x:number,y:number)

5 .input b

6

7 .decl c(x:number, y:number)

8 c(x,y) :- a(x,z), b(z,y).

9

10 .output c

The input relations this time take in a pair, rather than a single element. The input facts for a size N test

will simply be the set {(x, y) | x 2 {1, . . . , N}, y 2 {1, . . . , N}} for both relations.

The only difference between the two programs is the duplicated rule, which has the following form in

the translated imperative code:

1 FOR EACH TUPLE (x,z) IN RELATION a:
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2 FOR EACH TUPLE (z,y) IN RELATION b:

3 ADD (x,y) TO RELATION c

The outer loop iterates through N
2 elements, while the inner loop iterates through an extra N per tuple,

to ground the value of y. The extra loop hence takes O(N3) time. The loop appears in both programs,

however, but is duplicated in the original. As the loop dominates the computation, it is expected that the

optimised program will hence take roughly half the time as the unoptimised. Memory should remain

constant for both, however, as no memory overhead is added or removed; the loop is simply duplicated

in the original.

The performance of the Datalog program when run on SOUFFLÉ is shown in Figure 5.4.

(A) Evaluation time (B) Memory usage

FIGURE 5.4. SOUFFLÉ performance on synthesised Datalog program with the
MinimiseProgram transformer toggled on or off

The results match expectations fairly consistently. Both tests increase in time fairly rapidly, and both

time out at the same order of magnitude, but have similar memory usage throughout. Nevertheless, on

the largest input size prior to timeout, the time taken for the unoptimised program is over 2x the time for

the optimised version, as expected.
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5.1.2 Semi-Automated Transformations

5.1.2.1 Inlining

The synthesised program is:

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1) :- natural(x), x < SIZE.

4

5 .decl natural_pair(x:number, y:number) inline

6 natural_pair(x,y) :- natural(x), natural(y).

7

8 .decl query(x:number, y:number)

9 query(x,y) :- natural_pair(x,y), y = x * x.

10

11 .output query

The imperative version, ignoring the recursive natural relation computed as part of the first stratum,

is:

1 FOR EACH TUPLE (x) IN RELATION natural:

2 FOR EACH TUPLE (y) IN RELATION natural:

3 ADD (x,y) TO RELATION natural_pair

4

5 FOR EACH TUPLE (x,x*x) IN RELATION natural_pair:

6 ADD (x,x*x) TO RELATION query

Note that the natural_pair relation is marked to be inlined. The optimised program, after inlining

and resolution of equality constraints, therefore has the form:

1 .decl natural(x:number)

2 natural(0).

3 natural(x+1) :- natural(x), x < SIZE.

4

5 .decl query(x:number, y:number)
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6 query(x,x*x) :- natural(x), natural(x*x).

7

8 .output query()

The imperative version, again ignoring the natural relation, is:

1 FOR EACH TUPLE (x) IN RELATION natural:

2 IF (x*x) 2 RELATION natural:

3 ADD (x,x*x) TO RELATION query

Notice that the original program takes O(N2) time, as it must scan the natural relation twice in a

nested for loop. On the other hand, the optimised program only takes O(N) time, as the variable x

becomes bounded, meaning a simple existential check is enough rather than a full second scan. Further-

more, the natural_pair relation no longer needs to be stored. As the relation stored O(N2) tuples,

and no new relation is required to take its place, we should also see significant improvements in memory

usage.

The performance of the Datalog program when run on SOUFFLÉ is shown in Figure 5.5.

(A) Evaluation time (B) Memory usage

FIGURE 5.5. SOUFFLÉ performance on synthesised Datalog program with the
InlineRelations transformer toggled on or off

Time and memory were improved extremely by inlining the relation. While the optimised program is

still at a subsecond level for an input of size N = 106, the unoptimised program times out. Memory
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is also more or less consistent across input sizes for the optimised program, while the original be-

gins to increase in memory rapidly as input size increases, especially once the quadratic factor of the

natural_pair relation begins to dominate memory usage. A similar slight bump in memory usage

is observed for at N = 104 for the optimised version as seen in PartitionBodyLiterals and

ReplaceSingletonVariables.

5.1.2.2 Reordering

The synthesised program is:

1 .decl a(x:number)

2 .input a

3

4 .decl b(x:number)

5 .input b

6

7 .decl bad(x:number)

8 bad(0).

9 bad(x+1) :- bad(x), x < 10.

10

11 .decl query(x:number,y:number)

12 query(x,y) :- a(x), b(y), bad(100).

13

14 .output query

The output imperative version of the single query clause is:

1 FOR EACH TUPLE (x) IN RELATION a:

2 FOR EACH TUPLE (y) IN RELATION b:

3 IF (100) 2 RELATION bad:

4 ADD (x,y) TO RELATION query

The optimised program result with no SIPS (that is, no heuristic is used, and the original ordering of

rules is preserved) will not change the program. With the transformation toggled on with any given SIPS

option, however, the optimised program in this case will look as follows:
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1 .decl a(x:number)

2 .input a

3

4 .decl b(x:number)

5 .input b

6

7 .decl bad(x:number)

8 bad(0).

9 bad(x+1) :- bad(x), x < 10.

10

11 .decl query(x:number,y:number)

12 query(x,y) :- bad(100), a(x), b(y).

13

14 .output query()

The only change is the position of the fully bound atom, bad(100), in the query clause. As all

heuristics developed prioritise such atoms, and the remaining atoms all have independent free variables

as their arguments, the result is consistent across SIPS options. The imperative version is hence just a

rearrangement of the statements, as follows:

1 IF (100) 2 RELATION bad:

2 FOR EACH TUPLE (x) IN RELATION a:

3 FOR EACH TUPLE (y) IN RELATION b:

4 ADD (x,y) TO RELATION query

Notice from the program that the tuple (100) can never be in the relation bad. Therefore, the condi-

tional statement will fail in both cases. In the unoptimised version, we perform a double-nested for loop

scan of both relations either way, however, leading to an O(N2) time approach. Conversely, the opti-

mised program will fail the check immediately, skipping the entire loop chunk, hence taking constant

time. As only the order of atoms has changed, we expect memory to remain roughly the same.

The performance of the Datalog program when run on SOUFFLÉ is shown in Figure 5.6.
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(A) Evaluation time (B) Memory usage

FIGURE 5.6. SOUFFLÉ performance on synthesised Datalog program with the
ReorderLiterals transformer toggled on or off, with each possible SIPS option

As expected, the program scales significantly worse for the unoptimised program, with proportional

gains similar to those observed with InlineRelations and PartitionBodyLiterals. There

is some slight variability in the data at the N = 105 time analysis, though this is negligible due to the

small scale. Again, we see a slight bump in memory at the N = 104 range, which is speculated to have

the same causes as the similar bumps discussed fo the InlineRelations, PartitionBodyLiterals,

and ReplaceSingletonVariables experimental results.

5.1.3 Transformer Synergy

Thus far, the results have shown promising results for all transformations when acting individually on

simple synthesised programs. We still wish to observe whether the whole is greater than the sum of its

parts. That is, does the interaction of transformers aid in our optimisation pipeline? To investigate, we

write a new Datalog program aimed at taking advantage of the optimisation opportunities introduced by

each transformer, discussed in Chapter 4.

1 .decl a(x:number,y:number)

2 .input a

3

4 .decl b(x:number,y:number)

5 .input b

6
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7 .decl natural(x:number)

8 natural(0).

9 natural(x+1) :- natural(x), x<1000000.

10

11 .decl natural_pair(x:number,y:number) inline

12 natural_pair(x,y) :- natural(x), natural(y).

13

14 .decl c(x:number,y:number)

15 c(x,y) :- a(x,z), b(z,y), natural_pair(_,_).

16 c(s,t) :- b(u,t), a(s,u), natural_pair(x,y).

17 c(a,b) :- a(a,y), b(y,b), natural_pair(_,_).

18

19 .decl query(x:number)

20 query(x) :- c(x,_).

21

22 .output query

Running the program through the pipeline, as dictated in Chapter 4, the transformations produce the

following final program:

1 .decl a(x:number,y:number)

2 .input a

3

4 .decl b(x:number,y:number)

5 .input b

6

7 .decl exists_natural()

8 exists_natural().

9

10 .decl c(x:number,y:number)

11 c(a,b) :- exists_natural(), exists_natural(), a(x,z), b(z,y).

12

13 .decl query(x:number)

14 query(x) :- c(x,_).

15
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16 .output query

A combination of transformations are needed as part of certain stages of the transformation. For exam-

ple, the relation c cannot be reduced to one clause by the MinimiseProgram transformer without first

replacing all singleton variables. We would still get some benefit without ReplaceSingletonVariables

however, as c could be reduced to two clauses regardless. Similar interactions occur for other combi-

nations of transformers. We hence expect that disabling larger sets of transformers will result in a

significant degradation of performance.

The original program was run with every possible combination of transformers, and the results are

summarised in Figure 5.7 (evaluation time) and Figure 5.8 (memory usage). The input fact size was

N = 1000,

INPUT (a) = INPUT (b) = {(x, y) | x 2 {1, . . . , N}, y 2 {1, . . . , N}}

Each node represents a subset of the transformers. The label on the node corresponds to which trans-

formers were disabled: M means MinimiseProgram, P means PartitionBodyLiterals, E

means ReduceExistentials, S means ReplaceSingletonVariables, and I means InlineRelations.

As we go up the lattice, a larger set of transformers are disabled. We mark each cluster of similar results

with the same colour, green indicating the best group, orange indicating the middle group, and black

indicating a timeout.

Note that the final transformation, ReorderLiterals, was not shown to have an impact regardless

of SIPS chosen (including being disabled), and so is not shown in the figures to reduce clutter. It is

likely because of a lack of optimisation opportunities present due to the simplicity of the program and

data distribution of input facts. Moreover, the implementation of PartitionBodyLiterals already

prepends added propositions to the beginning of clauses, as discussed in Chapter 3, and so the potential

benefit of ReorderLiterals in the presence of propositions has already been applied.
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FIGURE 5.7. SOUFFLÉ evaluation time in seconds on synthesised Datalog program
testing all combinations of disabled transformers

Notice that, as we climb up the time lattice in Figure 5.7, disabling more and more transformations,

evaluation time increases. In particular, as soon as a program times out when a set T1 of transformers are

disabled, then it also times out for any set of disabled transformers T2 ◆ T1. Interestingly, when only one

transformer remains, regardless of which transformer it is, the program will always time out. Moreover,

disabling only one transformer does not always produce significant degradations in performance. The

scale of performance improvements is dramatic itself: when only two transformers are enabled, the 15

minute timeout limit is always reached; as soon as a third transformer is enabled, performance either
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remains at the timeout limit, or drops to less than half a minute. When transformers interact with each

other well, they interact with each other very well.

As a specific example, consider node P on the first level, where PartitionBodyLiterals was dis-

abled. Although not affecting performance when disabled on its own, as soon as RemoveSingletonVariable

is disabled as well, the program times out. The transformer hence has more of a background effect on

the program here, acting as a fallback in the case that other transformers are not present. At least one

of the combination is hence necessary for the program to not time out. The interaction is very interest-

ing, as it highlights the note mentioned when analysing transformer dependencies in Chapter 4: despite

not introducing new opportunities for one another, the two transformers interact in a way necessary for

maximal efficiency. Nevertheless, if these two transformers remain, while all others are disabled, we

still end up with a timeout. The transformers are hence necessary, but not sufficient. A similar effect

occurs with nodes EI and SI .

Another interesting observation is the node PI . Although green, indicating top performance, the pro-

gram times out as soon as any other transformer is disabled. Therefore, despite not leading to a signif-

icant decrease in performance when disabled on their own or together on this particular program, they

together provide an important framework of redundancy for other transformations to fall back on.

The transformations offer a contrasting impact on memory usage, as shown in Figure 5.7.
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FIGURE 5.8. SOUFFLÉ memory usage in megabytes on synthesised Datalog program
testing all combinations of disabled transformers

As we climb the lattice, memory usage increases, as expected. However, the effect of each transforma-

tion set in the memory lattice is very different to the effects observed in the time lattice. For instance,

MinimiseProgram no longer has the dramatic effect it does on time as it does on memory usage,

whilst inlining becomes a core factor. Such changes are expected: some transformations lead to mem-

ory improvements, while others provide only temporal gains. Inlining removes intermediate relations,

leading to lower storage overhead. On the other hand, MinimiseProgram only removes redundant

clauses, which would store no extra tuples anyway.



5.2 REAL-WORLD BENCHMARKS 119

Interestingly, the intersection of green nodes in Figure 5.7 and Figure 5.8 is the set of exactly two nodes:

the node where no transformation is disabled, and the node where only PartitionBodyLiterals

is disabled. When looked at in isolation, it may therefore seem as if the partitioning transformer is not

critical for performance gains. However, even in the simple synthesised program, it is an important

fallback when other transformations are not used. In other programs, other transformations may take

this role.

The interaction between the optimising program-rewrites is hence an important consideration when

developing a solid transformation framework. The work of multiple transformers in concert is critical

for efficient program execution.

From the above experiments, we have found that both the automated and semi-automated transforma-

tions can lead to incredible gains in performance. The gains in scalability seen are exciting; although

SOUFFLÉ is already praised for its scalability in the Datalog community, the results show a significant

improvement for each transformation. In particular, the original SOUFFLÉ engine was often observed to

time out after the 15 minute limit, while the optimised version was typically below a minute, and some-

times almost instantaneous. Memory usage also scaled well, especially for inlining. Despite being the

state-of-the-art in scalability, SOUFFLÉ therefore still has several potential avenues for improvement in

this area. When working in concert, the transformations also showed gains well beyond the power of the

work of any individual transformer. These results already illustrate the potentials of a solid high-level

program-rewriting optimisation framework, especially with the interaction of several transformers.

5.2 Real-World Benchmarks

The transformations, both automated and semi-automated, have illustrated a dramatic impact thus far

on the synthesised benchmarks. It is important that the optimisations devised in this thesis can also

be effectual when applied on real-world benchmarks, namely SOUFFLÉ Datalog benchmarks that are

used in practice. We therefore shift our attention now to two existing large-scale benchmark suites:

the publically available DOOP Dacapo benchmarks for static program analysis (Antoniadis et al., 2017;

Bravenboer and Smaragdakis, 2009), and private Amazon network-security benchmarks.
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The analyses crafted for the DOOP Dacapo benchmarks are extremely well-written hand-optimised

code, expertly made to explicitly take advantage of the evaluation system behind SOUFFLÉ. Conse-

quently, very little improvement is expected with respect to both time and memory for these benchmarks,

as related manual optimisations have likely already been made.

The Amazon network-security benchmarks are not handled in the same way. Amazon analyses are

generated from a domain-specific language to ease the writing procedure. As a result, the performance

may have been sacrificed, with few manual optimisations performed. We hence expect some visible

improvement in performance.

Observing the impact on both benchmarks will hence provide unique insights on performance in the

real-world. Note that, regardless of the benchmark suite chosen, real-world static-analysis programs

in Datalog tend to be more streamlined than the simple programs shown in the previous section on

synthesised benchmarks, despite being considerably larger. That is, recursion is not very common,

and relations are typically expressed to only compute what they need to. We therefore do not expect

improvements to the same level as those shown earlier, but hope to see changes nonetheless.

Again, we divide the experimental analysis into automated and semi-automated transformations. As

semi-automated transformations are more fine-tuned to the program being analysed, we expect their

effect to be more significant than that of fully automated transformers. We conclude with a look at the

complementary effects of the optimisations when applied in concert.

5.2.1 Automated Transformations

There are four automated transformers: MinimiseProgram, PartitionBodyLiterals,

ReplaceSingletonVariables, and ReduceExistentials. For each benchmark, we evalu-

ate the performance with respect to both memory and time, based on five conditions: all transformers

disabled, each transformer enabled on its own, and all transformers enabled.

Figure 5.9 shows the effect of each condition on the Amazon benchmarks, running the sec1 analysis.
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(A) Evaluation time

(B) Memory usage

FIGURE 5.9. Performance of SOUFFLÉ on the sec1 analysis with and without the new
automated transformations on Amazon benchmarks

The transformations do not seem to have a significant effect on time nor memory. In fact, partitioning

body literals seems to have a negative effect on time. The effect is tiny: only a 3% increase in time

taken. The negative effect is likely due to the added relational overhead by the transformer being greater

than the benefits obtained by extracting disconnected clause components.

A very similar effect can be seen on the DOOP benchmarks in Figure 5.10, running the context-

insensitive analysis.
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(A) Evaluation time

(B) Memory usage

FIGURE 5.10. SOUFFLÉ performance of context-insensitive analysis with and without
the new automated transformations on DOOP Dacapo benchmarks

As before, no significant impact can be seen on time nor memory, and partitioning seems to have a small

negative impact on evaluation time.

The automated transformations therefore do not currently improve the investigated real-world Datalog

programs. The results starkly contrast those of the synthesised benchmarks, where certain programs

were made instantaneous even in the presence of just one transformer, and negative effects were not ob-

served. It may hence be beneficial to more closely analyse the true inefficiencies in the programs using

manual human observations. Although the DOOP benchmarks are not expected to have many such inef-

ficiencies, due to already hand-optimised code, Amazon code may have yet undiscovered optimisation

opportunities.
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5.2.2 Semi-Automated Transformations

We now move on to the semi-automated transformations, InlineRelations and ReorderLiterals.

As mentioned above, semi-automated transformations rely on manual user annotations, and so are more

fine-tuned to the program being analysed. The transformational effects are hence expected to be more

significant than the automated transformers.

5.2.2.1 Inlining

For the inlining transformation, relations must be chosen to be inlined. As there are 277 relations in

the Amazon analysis, and 429 relations in the DOOP analysis, it is infeasible to evaluate each possible

combination of inlined relations. Recall from Section 3.1 that it is best to inline large relations that are

not used many times. We employ the profiler built into SOUFFLÉ to find such relations. As only a crude

heuristic and intuition is involved in selecting relations to inline at this stage, there may exist a more

effective combination of relations to inline.

Figure 5.11 shows the results when the sec1 analysis is run on each Amazon benchmark.
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(A) Evaluation time

(B) Memory usage

FIGURE 5.11. SOUFFLÉ performance of sec1 analysis with and without selective in-
lining on Amazon benchmarks

A considerable improvement in evaluation time was found for all benchmarks that did not time out.

However, the effect on memory usage is exceptional: the first benchmark reduced memory usage by

approximately 85%, while the second was reduced by almost 25%. Table 5.1 summarises the raw results

and percentage improvement of inlining on the Amazon benchmarks that did not time out, N-1075 and

N-2340.
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Inlining
Off On Improvement

N-1075 Time (s) 268.13 232.92 13.13%
Memory (MB) 371.59 57.74 84.46%

N-2340 Time (s) 245.52 208.4 15.12%
Memory (MB) 346.00 263.81 23.75%

TABLE 5.1. Performance impact of inlining running sec1 analysis on Amazon benchmarks

Time improvements can surprisingly also be seen in the DOOP benchmarks, despite no memory im-

provement, as shown in Figure 5.12. The lack of improvement in memory usage is likely due to the

same non-inlined relations in the program dominating memory space.

(A) Evaluation time

(B) Memory usage

FIGURE 5.12. SOUFFLÉ performance of context-insensitive analysis with and without
selective inlining on DOOP Dacapo benchmarks
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The effects of inlining already show promising results for the semi-automated transformations, when

compared to the automated transformations. With a more fine-tuned profile analysis, along with possible

rounds of trial and error on different datasets, an even more effective choice of relations to inline could

be found.

5.2.2.2 Reordering

For the literal-reordering transformer, the atom-prioritising heuristic (called the SIPS in our implemen-

tation) must be chosen. We test each SIPS possibility: disabled, least-free, all-bound, max-bound, and

max-ratio.

Figure 5.13 shows the effect of the reordering transformer on the sec1 analysis when run on the Amazon

benchmarks.
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(A) Evaluation time

(B) Memory usage

FIGURE 5.13. SOUFFLÉ performance of sec1 analysis with varying SIPS on Amazon
security benchmarks

The impact on time is the best seen so far on the first benchmark, with an improvement of approxi-

mately 68% when the least-free heuristic is chosen, and of 45% when the all-bound heuristic is used.

The least-free heuristic also finally shifted the final benchmark outside the range of a timeout for the

first time. Interestingly, however, the least-free heuristic almost doubled evaluation time for the second

benchmark. This shows the importance of the input fact-set, particularly the data distribution, on how

a reordering strategy impacts performance. Nevertheless, the all-bound heuristic is guaranteed to never

worsen performance, as shown in Section 3.5, and can already be seen as an effective default SIPS op-

tion. The max-bound and max-ratio heuristics, on the other hand, both resulted in a timeout in all cases,

and so may be less suited for the given analysis. Memory remained fairly consistent on reorderings that
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did not time out, though least-free had a noticeable increase in memory usage for the second benchmark.

We speculate that the spike is due to increased loop overhead with the new ordering.

The same analysis was run on the DOOP benchmarks, shown in Figure 5.14.

(A) Evaluation time

(B) Memory usage

FIGURE 5.14. SOUFFLÉ performance of context-insensitive analysis with varying
SIPS on DOOP Dacapo benchmarks

A stark contrast is seen when compared to the Amazon benchmarks. Most noticeably, the only timeout

that occurs this time is with the least-free heuristic, which showed the most promising gains for Amazon.

Marginal evaluation time improvements are seen when the all-bound heuristic is chosen, though not very

significant. Interestingly, despite being less theoretically justified in Section 3.5, max-ratio preforms

worse than max-bound on these benchmarks. The difference is likely a consequence of the max-bound
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heuristic matching the data distribution better in this case; the number of bound arguments is a better

estimate of relation size rather than the ratio.

It is therefore evident that the reordering transformation can have a substantial impact on evaluation

time, even on real-world benchmarks. The choice of SIPS is critical in ensuring performance gains,

however. An analysis of data distribution, possibly with the aid of an extended profiler for SOUFFLÉ,

may aid in the choice. Regardless, the all-bound heuristic is appropriate as a default SIPS option, as it

is both theoretically and empirically found to not worsen program performance. The major impact of

the transformation indicates that query scheduling could be the next big frontier in optimising Datalog

program evaluation.

5.2.3 Transformer Synergy

In the synthesised benchmarks section, we found that an interaction between transformers can produce

gains greater than the sum of its parts. To observe whether similar effects occur on real-world bench-

marks, we will use the sec1 analysis on the Amazon benchmark, N-1075, as a case-study. Recall that

the automated transformers did not have an impact on evaluation time or memory. However, both the

inlining, shown in Figure 5.15, and reordering, shown in Figure 5.16, semi-automated transformers had

a dramatic effect, as discussed earlier.

(A) Evaluation time (B) Memory usage

FIGURE 5.15. SOUFFLÉ performance of sec1 analysis on Amazon N-1075 benchmark
with and without selective inlining
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(A) Evaluation time (B) Memory usage

FIGURE 5.16. SOUFFLÉ performance of sec1 analysis on Amazon N-1075 benchmark
with varying SIPS

The original program takes 285 seconds. Inlining alone brings this down to 245 seconds (14% improve-

ment), while reordering alone reduces evaluation time to 90 seconds (68% improvement). Running the

automated transformations, even in conjunction with the semi-automated techniques, did not have a no-

table effect. However, once we run the reordering transformer in addition to the inlining transformer, the

result is an enormous improvement in time, as shown in Figure 5.17. In particular, though the all-bound

heuristic more than halves evaluation time, the least-free heuristic causes evaluation time to plunge from

the original 285 seconds to 5 seconds - a 98% improvement.

(A) Evaluation time (B) Memory usage

FIGURE 5.17. SOUFFLÉ performance of sec1 analysis on already inlined Amazon N-
1075 benchmark with varying SIPS
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Table 5.2 summarises the raw results for each combination of transformation. The results for the re-

ordering transformation reflect performance using the best-performing SIPS on this analysis: least-free.

Transformers Enabled
None Inlining Reordering Both

Time (s) 284.77 245.41 90.48 5.56
Memory (MB) 371.67 57.52 404.64 72.54

TABLE 5.2. Effect of each possible combination of semi-automated transformers (sec1
analysis, Amazon N-1075 benchmark, least-free heuristic)

The percentage improvement is shown in Table 5.3.

Transformers Enabled
Inlining Reordering Both

Time (%) 13.82 68.22 98.05
Memory (%) 84.52 -8.87 80.48

TABLE 5.3. Percentage improvement over the original program of each possible com-
bination of semi-automated transformers (sec1 analysis, Amazon N-1075 benchmark,
least-free heuristic)

The benefits provided when used in combination is greater than the sum of the individual benefits. The

substantial impact of transformer interaction hence remains exceptionally evident, even with real-world

benchmarks.

Therefore, although the automated transformations did not have a significant impact, semi-automated

optimisations had an incredible effect on both time and memory. The effect was further compounded

when the transformations worked in concert: while already impactful on their own, their synergy enabled

optimisations greater than the sum of their parts. The lack of existing work on transformer interactions

is hence a surprising issue. The performance benefits of a well-designed transformation framework

can therefore push the capabilities of SOUFFLÉ even further, regardless of its highly-optimised backend

evaluation strategy. More work could be done manually investigating real-world benchmarks to find

new avenues in the realm of fully-automated transformations for such programs.



CHAPTER 6

Future Work

The work presented in this thesis presents a broad range of transformers. Each transformer aims to

exploit different features of a typical bottom-up evaluation strategy to improve performance. The trans-

formers implemented can be extended to further improve performance, or to have a wider range of

applicability. New transformers tackling other inefficiencies in Datalog code could also be introduced.

In this section, we discuss potential future work in these areas. The future work is motivated by our

study of each transformer and their interdependencies, as well as the experiments and discussion from

the previous chapter.

6.1 Extending InlineRelations

6.1.1 Choosing Relations to Inline

The InlineRelations transformer is manually activated, and the user must make a choice on which

relations to inline. The choice is not trivial: the effectiveness of inlining a relation depends on its arity,

how often it is used, and so on. As mentioned in the experiments chapter, trial and error is usually not an

option, due to the sheer size of Datalog programs in the real-world. Moreover, poor decisions can lead

to decreased performance due to blowups in program size or unnecessarily repeated computations.

Developing a set of heuristics for automatically marking relations to inline is therefore of potential

benefit. In particular, as the choice is dependent on the size of the relation, and so on, a profile-driven

analysis may be beneficial. Profiling data may be derived from a previous run on similarly distributed

data. In the imperative world, a profile-guided approach alongside user directives has been shown to

yield significant performance gains (Ayers et al., 1997).
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6.1.2 Memoisation

The main drawback when inlining relations is the increased potential for repeated computation in certain

cases. The problem arises as the tuples computed for the relation are no longer stored in memory, but in-

stead generated on-the-fly, and discarded after use in a rule. However, on-the-fly computation is also the

primary benefit of inlining, as relations do not need to be fully computed. A compromise can be found

in the form of memoisation, similar to the tabling strategies used for top-down evaluation (Chen and

Warren, 1996; Tekle and Liu, 2011). Rather than purely generating tuples for an inlined relation on the

fly, and then discarding results after use, we can remember where they have been inlined, and keep track

of the generated tuples for the relation as we discover them. When a portion of a clause from an inlined

relation must be evaluated, we can check whether an appropriate tuple has been generated already. The

memoisation technique may improve evaluation time for certain inlined relations by reducing redundant

recomputations, at the cost of increased overhead.

6.2 Extending ReorderLiterals

6.2.1 Dynamic Query Scheduling

Our experimental results have shown that ordering literals effectively has one of the most profound

impacts on real-world Datalog instances. We choose an ordering based on heuristics aimed at minimising

the cost of a join. Such heuristics are severely limited by their assumptions on the relationship between

a boundness analysis and true data distribution. Note that the true data distribution of the relations in

a join can be known at runtime, hence removing the dependency on such assumptions. Therefore, we

anticipate that the development of a dynamic query scheduler that reorders atoms in a rule at runtime

instead could dramatically improve performance, especially considering the gains already seen with the

static scheduler. A dynamic query scheduler is more a backend optimisation, and no longer requires user

input.

6.2.2 Profile-Guided Heuristics

An alternative technique for reducing the dependency on a pure boundness analysis for the existing

static scheduler is the use of profile data. SOUFFLÉ offers a built-in profiler that offers a range of

statistical information for a particular program run. In particular, the size of each relation is recorded.
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Such information provides insights into the distribution of data among relations, and may provide a

more fine-tuned mechanism for join-cost estimation. The SOUFFLÉ profiler could be extended to also

store information on the data dependencies between arguments within a single relation. For example, a

binary relation a(x, y) may only contain one value of y for every value x; therefore, given x, y is now

fixed. Such statistics could be of further use when determining atom priorities. Therefore, static query

scheduling can be improved if profile data on previous runs with similarly distributed input data is taken

into account.

6.2.3 Improved Static Query Scheduling

The developed static query scheduler takes a greedy approach. Given a cost-metric, the current least

expensive atom is chosen next at each iteration. It may be useful to consider global heuristics that,

for instance, maximise the number of bound arguments across the entire rule. Further work can also

be done on developing useful heuristics that work well across a wider range of databases, and perhaps

determining the most appropriate ordering for a given set of rules based on similar programs in the past.

6.3 Extending MinimiseProgram

The program-minimising transformer currently only considers bijectively equivalent clauses. To further

the reach of the transformer, relations can also be checked to be bijectively equivalent. That is, for

a given pair of relations R and S, there exists a bijectively equivalent clause in S for every clause

in R, and vice-versa. In this way, several relations can be merged into one. The extension may be

particularly useful when interacting with the PartitionBodyLiterals transformer, which may

generate several equivalent propositional relations. Extending bijective equivalence to find redundant

atoms in clauses while still maintaining decidability in the presence of functors would also be interesting.

The equivalence check can also be extended to eliminate subsumed clauses within relations. For exam-

ple, consider the following snippet of Datalog code:

1 a(x)  b(x).

2 a(x)  b(x), c(x).

The second rule is subsumed by the first: if a variable x satisfies the second, then it must also satisfy the

first. Thus, the second rule can be eliminated without consequence, always producing a better program.
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From a more technical viewpoint, we limited our scope to clauses without negation or constraints. Nega-

tion is likely a simple extension, similar to the current atomic check. Adding symmetric constraints in

particular, such as equality, would add a layer of complexity to the equivalence check, however, as the

terms on either side can be swapped. Continuing the development of the MinimiseProgram could al-

low it to become a very useful component of the transformation pipeline, eliminating many redundancies

introduced by both the original program and other intermediate transformations.

6.4 Developing Further Transformations

From our observations of transformer synergy, it is evident that a broad range of distinct transformers can

induce significant benefits in program efficiency. For real-world benchmarks, although semi-automated

transformations had a dramatic effect on both evaluation time and memory, fully automated strategies

were not as productive. This implies that manually-driven optimisations may be a more interesting

endeavour. Transformers that perform well on real-world benchmarks may be developed through a closer

manual analysis of the set of rules and the usual distribution of input data to find common inefficiencies.

Since Amazon benchmarks are not as carefully hand-optimised as DOOP, Amazon code may have yet

undiscovered optimisation opportunities.



CHAPTER 7

Conclusion

Datalog has resurfaced as a domain-specific programming language in many new application domains

in recent years. The rise is primarily due to the development of high-performance scalable modern

Datalog engines, such as SOUFFLÉ, with well-optimised backend evaluation strategies. Nevertheless,

SOUFFLÉ and other Datalog engines in popular use typically have a poor framework for high-level

program-rewriting optimisations. Previous work in the literature has highlighted the benefits of such

optimisations, whilst also neglecting to discuss the potential benefits of interacting transformations.

In this thesis, we introduce a series of high-level program-rewriting transformations. The transfor-

mations are aimed at providing hints to the imperative evaluation mechanism to further optimise the

evaluation process. Each transformation is justified by a distinct impact on the produced code, given a

non-specific bottom-up evaluation approach. We also developed a novel framework for transformation

pipelines on Datalog code to coordinate the effects of each transformation. The transformations and

pipeline concept were all implemented into SOUFFLÉ.

The impact of such a transformation framework was demonstrated on a broad range of Datalog pro-

grams. The increase in performance on large data-sets for the already scalable SOUFFLÉ Datalog engine

was evident on both synthesised and real-world benchmarks. The synthesised benchmarks illustrated

the raw potential of the transformers, while the real-world benchmarks reflected the translation of these

performance gains when used in practice. In several cases, the transformations enabled an efficient exe-

cution of programs that would otherwise time out. The semi-automatic transformations also had a size-

able impact on real-world benchmarks, including an industrial security-analysis tool used by Amazon,

reducing time and memory requirements by up to 68% and 85% respectively on terminating programs

when transformers are run individually. The benefits were further escalated to a 98% improvement

in evaluation time when the optimisations were used in concert, speeding up the performance of the

original program by up to 57 times. An even higher degree of improvement was seen for synthesised
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benchmarks, where a lack of transformer interaction resulted in programs consistently timing out. The

field of transformer interactions is hence an area of untapped potential, and should be further explored.

Possible future work involves the extension of each transformer to be more applicable on Datalog pro-

grams. For example, program minimisation could be extended to consider equivalent relations, as well

as clauses. Future research could also more closely observe real-world benchmarks and associated pro-

filing information manually to discover the current bottlenecks in evaluation arising due to poorly written

Datalog code. The analysis could likely prompt new avenues for transformer development and exten-

sion. From our experiments, effective query scheduling is likely the next big step in Datalog program

optimisations, especially when performed dynamically at runtime.

The transformation framework we have developed in this thesis has pushed the boundaries of scalable

Datalog evaluation to new heights. By extending the work on transformer development, pipeline anal-

ysis, and the synergy of transformations, we believe that Datalog will become a more widespread tool

from both an academic and industrial standpoint.
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