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Abstract

Designing and crafting a static program analysis is challenging
due to the complexity of the task at hand. Among the challenges
are modelling the semantics of the input language, finding suitable
abstractions for the analysis, and handwriting efficient code for the
analysis in a traditional imperative language such as C++. Hence,
the development of static program analysis tools is costly in terms
of development time and resources for real world languages. To
overcome, or at least alleviate the costs of developing a static
program analysis, Datalog has been proposed as a domain specific
language (DSL). With Datalog, a designer expresses a static program
analysis in the form of a logical specification. While a domain
specific language approach aids in the ease of development of
program analyses, it is commonly accepted that such an approach
has worse runtime performance than handcrafted static analysis
tools.

In this work, we introduce a new program synthesis methodology
for Datalog specifications to produce highly efficient monolithic C++
analyzers. The synthesis technique requires the re-interpretation of
the semi-naive evaluation as a scaffolding for translation using
partial evaluation. To achieve high-performance, we employ staged-
compilation techniques and specialize the underlying relational data
structures for a given Datalog specification. Experimentation on
benchmarks for large-scale program analysis validates the superior
performance of our approach over available Datalog tools and
demonstrates our competitiveness with state-of-the-art handcrafted
tools.

Categories and Subject Descriptors F.3.1 [Logics and Meaning
of Programs]: Specitying, Verifying and Reasoning about Programs;
H.2.4 [Information Systems]: Systems—Query processing, Rule-
based databases; D.3.4 [Programming Languages]: Processors—
compilers

General Terms Languages, Performance

Keywords  Static Program Analysis, Datalog, Program Synthesis,
Compiler

1. Introduction

Program analyses are difficult to design and implement for real-
world programming languages. The challenges range from faithfully
modelling the semantics of the input programs, to finding sufficiently
precise abstractions, to crafting a static program analysis resulting
in thousands of lines of code in a traditional programming language.
To overcome or at least alleviate the challenges in program analysis,
Datalog [2-4, 8, 10, 25, 29, 34, 36, 37] has been employed as a
domain specific language (DSL). Program analyses can be expressed
concisely in Datalog reducing the complexity and making the
program analyses uniform such that they become interoperable
with each other. Note that Datalog has received renewed interest
in various computer science communities beside static program
analysis, including information extraction, networking, security, and
cloud computing as a DSL and a rapid-prototyping tool [15].

Datalog bridges the gap between specification and implementa-
tion, i.e., a programmer specifies a problem declaratively rather than
describing it step-by-step, imperatively. A Datalog engine executes
the specification for a set of input relations (also known as the exten-
sional database) and produces an output relation for a query. There is
a cornucopia of Datalog engines available. The most recent Datalog
engines used in program analysis are bddbddb, ©Z, and LogicBlox.
The aforementioned engines use fast/compressed data structures and
have pushed the boundaries of what previous logic-based analysis
could achieve [10, 29].

Despite these advances, the vast majority of the state-of-the-
art analysis tools including points-to analysis [11] are developed
manually, requiring typically thousands of lines of code. This is
mainly due to program analyses specified in a declarative fashion
still do not scale well for large-scale input programs with millions
of program variables. Consequently, the question arises why there is
a performance gap between modern Datalog engines and hand-
written code, although modern engines use efficient evaluation
techniques and sophisticated data structures for their evaluation. To
answer this question, we state the research hypothesis that current
Datalog engines do not adapt their evaluation according to their
input specification.

In this work, we introduce a new angle to the problem: We
perceive the problem of executing Datalog as a program synthesis
problem whose goal is to automatically construct a program that
satisfies the input specification. That is, we instantiate an analysis
tool given a declarative Datalog specification of an analysis. While
efficient synthesis from high-level to low-level imperative code has
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Figure 1. Typical Program Analysis in Datalog using an Extractor

received attention in the past [18], the intricacies of synthesizing
Datalog to low-level imperative code has not received much atten-
tion, and general synthesis techniques cannot easily be adopted for
Datalog evaluation.

We introduce a novel technique that goes beyond straight forward
translations. Our synthesis approach is an adaptation of the semi-
naive evaluation commonly used to evaluate Datalog programs.
However, our technique addresses several key aspects of generating
low-level imperative code from Datalog. Such aspects include the
generation of specialized work-list algorithms for computing fixed-
points, generation of indices for faster data querying and specialized
data structures, among others. In this paper we show that Datalog-
based analysis can be just as fast and scalable as hand crafted tools.
The key insight is that the conversion from Datalog to low-level
code must be done with the specifics of Datalog in mind. Our
experimental results demonstrate the effectiveness of our technique.
We are able to perform very large scale program analyses (millions
of variables, hundreds of attributes, billions of tuples) at a fraction
of the time compared to existing Datalog engines while being on
par with the state-of-the-art in hand crafted tools.

We aim to give an insight to future designers and implementors
of Datalog engines how to better optimize performance. While our
focus in this paper is on program analyzers, we believe that our
approach can be used to synthesize efficient general programs from
Datalog. Our main contributions are:

e introducing a method of efficient program synthesis from Data-
log analysis specifications

e specialization techniques for efficient parallelization and adap-
tive data structures

e providing experimental results including a points-to analysis
written in Datalog that analyzes the OpenJDK' library with
millions of variables in under a minute

The paper is organized as follows. In Section 2 we motivate our
work by illustrating the performance gap between an analysis pro-
cessed by existing Datalog engine and an equivalent, handwritten
analysis. Sections 3-5 introduce our new program synthesis tech-
niques to generate from a Datalog input specification executable
OpenMP/C++ code. Section 6 briefly covers the implementation of
our approach within the Soufflé Datalog engine, and we demonstrate
the effectiveness of our new approach. We survey the related work
in Section 7 and draw relevant conclusions in Section 8.

2. Motivation

An example architecture of a Datalog-based program analysis
framework is shown in Figure 1. An extractor translates the input
program to a collection of relations describing the relevant semantics
of the input program. The input relations of a Datalog program are
referred to as Extensional Database (EDB) in Datalog terminology.
The program analysis itself is expressed in form of rules that is
referred to as Intensional Database (IDB).

Consider the following, frequently occurring Datalog program
where the IDB consists of the following rules,

path(X,Y) :— edge(X.,Y).
path(X,Z) :— path(X,Y),edge(Y,Z).

and the query is ?path(X,Y). This program computes the transitive
closure path of a given relation edge as EDB. Such an analysis may,
for instance, be utilized to obtain a list of all reachable functions
within a call graph. A slightly extended variation also provides the
foundation for the widely applicable points-to analysis forming the
foundation of a large variety of static program analysis. The given
query can be converted into C++> within a few minutes, solely
relying on constructs from the STL library. The central element is
outlined in the following code snippet:

using Tuple = std::array<int,2>;
using Relation = std::set<Tuple>;

Relation edge, tc;

// fill edge relation
edge = someSource () ;

// eval first rule
tc = edge;

// eval second rule
auto delta = tc;
while (! delta.empty()) {
// compute new delta
Relation nDelta;
for (const auto& tl delta) {
auto a = edge.lower_bound({tl1[1],0});
auto b = edge.upper_bound({t1[1]+1,0});
for (auto it = a; it != b; ++it) {
auto& t2 = xit;
Tuple tr({t1[0],t2[1]});
if (!contains(tc,tr)) {
nDelta.insert (tr);
}
}
}
// insert delta
tc.insert(nDelta.begin () ,nDelta.end());
// swap data
delta.swap(nDelta);
}

It is crucial for the performance of the C++ code, that entries in the
edge relation are implicitly sorted enabling a range query for fast
access. When compiling the given code fragment with GCC 4.9.3
and applying it on a graph with 1.000 vertices connected by 10.000
random edges, the program takes ~ 2.0s and 91MB to compute all
paths in the graph.

Executing the same problem on various Datalog engines takes
~ 6.5s / 30MB (bddbddb), ~ 340s / 1667TMB (1Z), and ~ 12.2s
/ 126.9MB (a SQLite based solver) on the same hardware (see
Section 6.1). The outcome of this simple experiment illustrates
the significant performance gap between state-of-the-art Datalog
engines and hand-crafted code.

I Java, JDK, and OpenJDK are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

2 when referring to C++ we refer to the C++11 standard



While it may be still viable to manually craft code for small
problems as outlined in the motivating problem, for a large scale,
fully featured analysis instance this becomes inviable. A real world
example may be comprised of hundreds of relations interlinked via
numerous, recursive references, making it an extremely tedious and
highly error prone programming task to manually write the analysis
from scratch in an efficient way.

To overcome or at least alleviate the performance gap between
state-of-the-art Datalog engines and handcrafted code, we propose a
program synthesis approach to translate Datalog to specialized C++
code.

3. Framework Overview

Our framework translates a Datalog program to an executable that
(1) adheres to the Datalog specification and (2) is highly optimized.
We perform the program synthesis of Datalog specifications in
four major stages: The first stage translates the declarative Datalog
program to an abstract syntax tree. The second stage translates the
abstract syntax tree to an abstract machine called the Relational
Algebra Machine (RAM). The intermediate representation of the
RAM features a concise set of relational algebra expressions,
relation management statements, and control flow constructs with
parallelism. The third stage translates the RAM program to C++. In
the final stage, the C++ program is translated to a binary executable.

The architecture of our program synthesis framework for Datalog
is depicted in Figure 2. The four stages have different intermediate
languages for representing the input program. In each stage, opti-
mizations are performed to achieve a highly-efficient binary that is
able to perform computations of large relations in parallel.

In the first stage, the Datalog specification is parsed and trans-
lated to an abstract syntax tree (AST). Semantic checks are con-
ducted in this translational step including right usage of relation sym-
bols, type checks of proper use of variables, and checks for cyclic
negations among many other semantic checks. After the semantic
checks, optimizations are performed. Those AST optimizations can
also be perceived as a source-to-source translation, i.e., the input
program is transformed to a more efficient input program (although
represented as AST). The optimizations include:

® constant propagation, 1.e., the forwarding of constant values
within and among rules,

e alias elimination, i.e., the unification of variables according to
equality constraints imposed by the user,

® rule elimination, i.e., the elimination of rules that do not con-
tribute when atoms in their bodies refer to empty relations, and

e relation elimination, i.e., the elimination of entire relations and
their rules, if they do not contribute towards the output.

In the second stage, the AST of the declarative input program
is translated to an imperative relational description before it can
be converted to C++. We introduce an abstract machine called the
“Relational Algebra Machine” (RAM) for this purpose. The interme-
diate representation of the RAM constitutes a concise, imperative
language providing a small set of simple control statements as well
as operators and expressions to manipulate the state of relations.
The lowering from a declarative Datalog program to an imperative
relational algebra machine program is performed by re-interpreting
the semi-naive evaluation as a translation scheme [1]. The RAM rep-
resentation of an input program offers ample opportunities to apply
optimizations. Unlike on the AST level, mid-level optimizations may
target details of the evaluation process not visible in the declarative
specification. Among the most important mid-level optimizations is
the conversion of simple traversal over relations to range queries and
the associated problem of finding appropriate indices to speed up the
evaluation of rules in form of nested join loops in RAM. The RAM

representation of an input program provides enough abstraction to
perform specific optimizations such as predicate leveling [1] and
other optimizations that would be too tedious at a low-level such as
C++.

The third stage converts the RAM immediate representation to
C++ code. The main challenge of this translational step is to generate
efficient, high performance C++ code for processing and storing
information of in-memory relations. In our framework, we obtain
sufficient performance by heavy use of C++ templates tailored for
the use of relational algebra operations and efficient data structures
including various types of indices. For specific instances of relations
and operations we permit customizations of the code in the templates
to achieve maximal performance. Thus, essentially, a large part
of the actual code generation is deferred to the last translation,
i.e., the C++ compiler that translates the heavily templatized input
program to an executable program. The technique of scripting the
generation of code using C++ templates is also known as template
meta-programming. For example, if an actual type of an object
is known at compile-time the dynamic dispatch is converted to a
static call improving vastly the performance of the compiler. In
our specific use-case, our meta-programming becomes a partial
evaluator that pushes computations from runtime to compile-time if
they are static.

In the final stage, the resulting C++ code is compiled to a binary
executable. The C++ compiler unfolds the template producing highly
efficient assembly code that is specialized for a given input-program.
Using C++ makes the Datalog compilation independent of the actual
target architecture.

4. Synthesizing from Datalog

The second stage synthesizes an imperative program from the
declarative Datalog program represented as an AST using a step-by-
step relational description of the input program. As aforementioned,
the intermediate representation is an abstract machine program
for the Relational Algebra Machine, i.e., an abstract machine
specifically designed for relational algebra. The input program
represented as a RAM program is further optimized using the
optimizing transformations.

4.1 Adapting Semi-Naive Algorithm

For translating an AST to a RAM program, we use the semi-naive
evaluation technique. The semi-naive evaluation is a bottom-up
evaluation of a Datalog program, i.e., results are constructed from
the facts to the goal. In contrast to Prolog, this is possible because
the relations have a finite domain and they grow monotonically
until a fixed-point is reached. Ullman has shown [35] that semi-
naive evaluation is an efficient evaluation strategy. There are various
survey papers and books discussing the semi-naive evaluation for
evaluating Datalog programs including [1, 9, 28]. The semi-naive
evaluation can be seen as a fixed-point computation where relations
are initially empty. Clauses of the Datalog program are interpreted
as semantic equations and are applied in a Kleene-fixed-point style,
until no more new knowledge can be gathered. The obtained fixed-
point represents the smallest model-theoretical solution, which
coincides with the solution of the logical Datalog query [1].

For program synthesis, the semi-naive evaluation is specialized
for a given set of rules. The specialization produces a series of fixed-
point computations in form of a program. A different interpretation
is that a “Futamura projection” [12, 13] is used to obtain a special-
ized evaluation for a given IDB, i.e., the Semi-Naive Evaluation [1]
can be seen as an interpreter that is specialized with its “static”” in-
tensional database (i.e. the Datalog rules representing the program
analysis). As an outcome of the Futamura projection, we receive
a relational algebra machine program that expresses the computa-
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Figure 3. The semi-naive evaluation splits recursively defined
relations into subsets per fixed-point iteration called previous,
current, delta, and new knowledge.

tion of the program analysis as a series of fix-points performing
relational algebra operations.

To avoid that all recursively defined relations are computed in
a single fixed-point, the semi-naive evaluator computes the data
dependencies between relations in form of a precedence graph.
Strongly-connected components (SCC) of the precedence graph
resemble mutually recursive relations, and code for a fixed-point for
these relations is generated. The SCC graph of the precedence graph
represents a partial order that sequences the generated fixed-points
and non-recursive rules such that the execution becomes efficient.

Consider the following Datalog program:

a(X) :(— b(X), c(X).
b(l).
b(X) :(— ¢(X), dX).
c(2).
c(X) :— b(X), dX).
d(3).

The fact d(3) of relation can be safely evaluated before all others,
i.e., number 3 is inserted into set d, since d is not depending on the
value of any other relation. Also, a can only be computed once b
and c have been computed, so the rules of relation a will be last to
be evaluated. However, for b and c there is no total order since rules
of both relations are mutually dependent on each other.

To avoid recurring computations, the semi-naive evaluation
scheme keeps track of the previous, current, delta and new knowl-
edge of a recursively defined relation as depicted in Figure 3. In this
context, knowledge is defined as a set of tuples. In each iteration of
the fixed-point iteration new knowledge is obtained, i.e., a new set
of tuples is discovered for a recursively defined relation. The general
observation is that only new knowledge in the previous iteration
(i.e. delta knowledge) can generate new knowledge in the current
iteration. Hence, for each iteration, relations are sliced into (1) cur-
rent knowledge, which includes all the knowledge except the new
knowledge of the current iteration, and (2) in the new knowledge
gathered in the current iteration. With this partitioning of relations,
the fixed-point will converge faster. In our semi-naive code genera-
tion scheme we have for each recursively defined relation two helper
relations: one relation that stores the new knowledge and another
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Figure 4. Relational Algebra Machine

relation that stores the delta knowledge. The previous knowledge is
deduced by set difference and is not stored explicitly.

For our example, the code generator emits code for a fixed-point
calculation of relation b and c. The code fragment below outlines
the code generated for the example above:

b = {1}; Ab = b;

c = {2}; Ac = c;

while (Ab U Ac # 0) {
new_b = (Ac N d) \ b;
new_c = (Ab N d) \ ¢

= b U new_b;

= ¢ U new_c;

’

new_b;
new_c;

I>I>OO"
o o

}

Inside a loop, new knowledge is obtained for relations b and ¢
based on the Ab and Ag, i.e., the new knowledge of the previous
iteration. The loop is executed until the A sets become empty. For
more sophisticated queries, the notion of previous knowledge is
required, i.e., the state of the relation in the previous iteration. A
detailed description of the semi-naive evaluation can be found in [1].
Once the relations b and c stabilize, a is computed by

a=bnNec

and an overall solution of the Datalog program is obtained.

The illustrated code generation pattern for semi-naive evalua-
tion can be generalized to an arbitrary Datalog program, and the
conversion from the AST to the RAM is using semi-naive evalua-
tion as a code generator. For example, the motivating C++ example
using STL containers has been constructed employing semi-naive
evaluation techniques.

4.2 Relational Algebra Machine

The Relational Algebra Machine (RAM) is an abstract machine that
is used as a semantic model for evaluating translated input programs.
The machine is specifically tailored for executing relational algebra
programs that are produced by the semi-naive evaluation. The RAM
program contains relational algebra operations to compute results
produced by clauses, relation management operations to keep track
of previous, current and new knowledge in the semi-naive evaluation,



and imperative constructs including statement composition for
sequencing the operations, and loop construction with loop exit
condition to express fixed-points computations for recursively-
defined relations. We also extend the machine to execute statements
in parallel via a parallel-statement. The parallel-statement processes
a list of sub-statements in parallel and blocks until all of those
have been completed. The static nature of a RAM program ensures
that optimizations can be performed effectively, e.g., indexing, load
balancing, etc.

The abstract machine operates solely on relations, which are sets
of tuples. It has no explicit notion of variables and/or memory. The
evaluation of a RAM program entails maintaining a collection of
relations as a state for executing a RAM program. The relations
are fixed throughout the execution of a RAM program, i.e., no new
relation is added or deleted to/from the state whilst executing the
program. However, the contents of a relation may change. Figure 4
depicts the execution model of a relational algebra machine program.
There is a set of relations that the program operates on. Some of the
relation are pre-loaded with data, e.g., the tuples defined by the facts
in the original input program.

A RAM program is able to express nested join loops to execute
Datalog clauses and the book-keeping portions of code for the
fixed-point calculations. For example the rule of the previous code
fragment

new_b = (Ac N d) \ b;

is represented in RAM with a corresponding nested join loop similar
to

for( x € Ac )
for (y e d)
if (x=yAXx¢&Db)
b =>bU {z}
which will then be optimized by mid-level optimizations to
for( x € Ac )
if (xedAx¢ghbdb)
b=>bU {z}

The RAM has the ability to express range queries for fast
membership tests and simple searches. The RAM engine permits
a wide range of optimizations including the selection of indices,
and condition leveling, i.e., breaking conditions up and placing
predicates to the most-outer loop in the loop-nest.

The statements of the relational algebra machine are listed below
in BNF notation:

S —insert O

O —search R [where C]do O,

, Vi) into Ry
S —merge R, into R,

O —project (V71,. ..

S —swap Ry and R;

S —purge R

S —51; 5

S —loop S; endloop

S —exitC'

S —par Si||...||Sk endpar

The statement insert represents a relational algebra statement
performing the evaluation of a clause where O is a relational
operation including cross product, selection and projection. Note
the relational algebra machine has no high-level INSERT/SELECT
statement as provided by the SQL standard, instead the nested join
loop is expressed as cascaded searches followed by a project. The
semantics of a search is the traversal over all tuples in relation R,

and tests whether for a tuple the condition C' holds. If it holds,
the attached operation O; is executed recursively passing on the
currently selected tuple of the traversal and the selected tuples
of outer traversals. If the condition does not hold, the operation
O is skipped and the next tuple is assessed until the end of
the relation is reached. The statement merge adds all tuples of
relation R; to relation Rs. The statement purge deletes all tuples in
relation R. The statement swap swaps the contents of two relations.
Statements can be sequenced by semicolon by S1; S2 such that Sy
is executed prior to S2. Loops are formed with statement loop . . .
endloop and can be terminated with exit C' inside the loop body. The

statement par S1|| . .. || Sk endpar represents the parallel execution
of statements S1, . .., Sk. It continues executing until all statements
S1,..., Sk have been terminated. The sequence instruction and the

parallel instruction implements a series-parallel based programming
model. Note that the code generator is responsible for producing
code that does not contain races since the consistency is not enforced
by the abstract machine, i.e., a parallel section does not allow the
parallel execution of two or more project statements that perform
insertions on the same table.

We demonstrate the translation from AST to RAM using the
example from Section 2, which computes the transitive closure of
the binary relation edge and stores the result in the relation path:

edge(1,2).

edge(2,3).

path(X,Y) :— edge(X,Y).

path(X,Z) :— path(X,Y) ,edge(Y,Z).

The SCC graph of the example above contains two components.
A non-recursive component that contains the relation edge and a
recursive component path. The topological order will enforce the
evaluation of relation edge before relation path. In the first step, the
tuples of the facts are loaded in the relation edge. In the second step
the path relation is computed recursively. The relaxed semi-naive
evaluation lowers the Datalog program above into the program as
shown in Figure 5. In the example, the rule

path(X,Y) :— edge(X,Y).

is non-recursive and is executed outside the fixpoint-loop. The tuples
of the relation path are transferred to the relation delta_path for boot-
strapping the fix-point loop. Inside the loop, the recursive rule

path(X,Z) :— path(X,Y) ,edge(Y,Z).

is translated to a nested join loop. The loop terminates if no new
knowledge can be found. At the end of a loop iteration the tuples of
new_path are transferred to delta_path for the next iteration.

4.3 Index Selection

Range queries are query operations on indices. Since indices are
costly, one would ultimately desire a minimal set of indices for a
given relation. To find a minimal set of indices, we employ a discrete
optimization problem and have devised a solver for it.

Consider a relation r with 3 attributes X, Y, and Z that is used
in the following rule:

a(X) :(— b(X), r(X,Y,X), c(Y).

which searches for all values in the relation r where the first and the
last component is of a value X stored in b and checks then whether
the second component is also present in the relation c. The nested
join loop of the loop may be the following one:

for( x € b )

for( (y,z,w) € {(y,z,w) €r |y =x AWwW=Xx})
if (ze€cAx¢a)
a=aU {z}



// populate fact tuples
project (1, 2) into edge;
project (2, 3) into edge;

// rule: path(X,Y) :— edge(X,Y).
insert

search edge do

project (edge[0],edge[1]) into path;

// create delta knowledge for first iteration
merge path into delta_path;

// fixed—point loop
loop
// reset helper relation
purge new_path;
// rule: path(X,Z) :— edge(X,Y), path(Y,Z).
insert
search edge do
search delta_path where (
(edge[1] = delta_path[0]) and
((edge[0],delta_path[1]) not in path)
) do
project (edge[0],delta_path[1]) into new_path

B

// fixpoint reached?
exit counttuples(new_path) = 0;

// book—keeping
merge new_path into path;
swap new_path and delta_path;

endloop

Figure 5. RAM program for Datalog program with helper relations
new_path and delta_path that store the new knowledge of the current
and previous iteration, respectively.

where the second loop is an application of a range query on the
relation 7. To effectively query all elements of r with a given value
for the first attribute X and last attribute Z a corresponding index on
the relation is required. For instance, an index sorting all elements
according to the attribute order X < Z would be suitable. So would
be an index orderedby Z < X, X < Z <Y,orZ < X <Y.The
latter two are even supporting an efficient query on all 3 attributes
while only those starting with an X support queries on the X
attribute only. This observation, that indices may be shared among
several queries, is utilized by our index selection optimization. The
transformation collects all search patterns for a relation that are used
in range queries, and computes the minimal set of indices using a
discrete optimization problem. The indices will then be created at
the creation-time of a relation and are maintained throughout the
lifetime of a relation.

5. Native Optimizations

In the third stage, a RAM program is translated to a templatized C++
program. The templatized C++ program realizes efficient relational
algebra operations including emptiness checks, membership tests,
scans, range queries, insertions, and union operations. As we show in
Section 6 the most performance critical operations are the insertion
and query operations. It is therefore of paramount importance to
have an effective code generator using templates that generates
efficient data structures for relations and their operations.

5.1 Data Structures

In our execution model we keep relations in memory. Given the
increasing availability of computers with terabytes of memory, this
is a viable option. There are many different data structures that can
operate on relations stored in memory including Hashes, Trees, Tries,
Bit-vectors, or Sorted lists. However, most of the aforementioned
data structures are not suitable for very large relations. For example,
Hashes, while being efficient for inserts and membership tests,
do not provide acceptable range query support and the hash table
size deteriorates the cache performance, and as a consequence the
overall run-time. Sorted lists are expensive for insertions and Bit-
vectors require large amounts of space, in particular for higher-
dimensional tuples. In our experience, the only viable approaches
to store very large relations are balanced search trees and Tries.
For these membership tests and range queries exhibit a worst-case
execution time of O(log(N)).

Among various types of balanced search trees, B-trees, which
were originally designed for secondary storage data structures, are
known to be the most memory efficient and cache effective data
structures. Therefore, we employ in-memory B-trees as our primary
data structure for storing very large relations to obtain performance.
However, a reorganization of B-trees becomes costly for executing
relational operations in parallel. To overcome this issue for some
relations, we introduce an alternative datastructure that is based on
geometrically encoded Tries. The choice of the data-structure is
dependent on the relation and its use. Both implementations are
interchangeable, since both data structures use the same API.

In the evaluation of the respective performance trade-offs be-
tween B-trees and Tries we discovered that in our use-cases, Tries
provide better performance for relations with one or two attributes.
We provide experimental evidence in Section 6.1 for the selection
of the possible data structure. With a growing number of attributes,
the Trie data structure becomes ineffective in terms of run-time
and memory consumption, and the B-tree outperforms the trie data
structure. From our empirical analysis, we derived the following
decision table:

# of Number of Indices
attributes || 0 —1 | > 2
0 flag -
1-2 Trie Trie
3—5 B-tree B-tree
6—n B-tree | blocked list + indirect B-tree index

Based on the number of attributes and the number of indices we are
switching between B-tree and Trie which store the relation directly.
This is also known as indexed-organized tables. For relations with
many attributes, the table is stored in a blocked list and indices
contain pointers pointing to the records in the list in order to save
memory.

The data structures are written in a template meta-programming
library that also provides the mechanisms to choose the right
data structure for a given relations and hence simplifies the code
generation.

5.2 Specialization

Besides the selection of the data structure, additional parameters
enable the C++ template mechanisms to produce very specialized
code for each individual relation within the resulting program. Those
parameters include:

e grity — the number of attributes of the tuples to be stored in a
relation

e primary index order — the order to be utilized for sorting
attributes in the main data store of a relation; also the index
utilized for membership tests;



e secondary index orders — a list of indices to be associated and
automatically maintained for a relation; queries may select those
instead of the primary index if more suitable

Those template parameters are utilized to synthesize, e.g., com-
parison operators and search operations on B-tree keys and nodes
specifically tailored for the individual use cases. As a consequence,
the optimizing C++ compiler is enabled to conduct more low-level
code optimizations due to considerably reduced data dependent con-
trol flow decisions. Essentially, every relation and every index gets
its very own, specialized implementation.

5.3 Parallelization

There are two elements to be consider to effectively utilize contem-
porary hardware: caches and parallel cores. The effective utilization
of caches is achieved by choosing appropriate data structures. To
harvest the computational power of parallel cores, the code generator
issues parallel constructs.

A Datalog program provides ample of opportunities for paral-
lelization. The most relevant code portions to parallelize are the
executions of nested join loop. For instance, the loop nest

for( x € b )

for( (y.z,w) € {(y,z,w) € r |y=XxAW=Xx})
if (ze€ecAx¢ga)
a=aU {z}

can be parallelized by partitioning the relation b and distributing
the partition among multiple, parallel resources. However, to be a
valid transformation, all operations conducted within the loop nest
have to be thread safe. Note that scanning, querying and checking
for memberships are pure read-only operations which can always
be processed safely in parallel. The only critical operation is the
insertion of new values into a in the innermost loop. This update
operation on the set-representation of a needs to be synchronized.
However, the synchronization only needs to protect concurrent in-
serts. A protection against e.g., concurrent scan and insert operations
is not necessary since such combinations cannot occur in a RAM
program produced by the semi-naive evaluation strategy.

To protect concurrent inserts for B-trees, several strategies
are available. The simplest one is to protect concurrent insertion
operations by locking the entire tree, thus sequentializing updates.
Unfortunately, this also severely limits the parallel efficiency of
the resulting code since due to lock contention, threads block each
other in the execution of insert operations. Consequently, a locking
strategy involving the underlying data structure on a finer granularity
is required.

For Tries the synchronization operation for insertions can be
implemented using atomic updates, thus realizing a lock-free data
structure. Whenever a new node is inserted, a null-pointer some-
where in the structure will be atomically updated to point to the new
node. If the update fails, the insertion procedure is simply re-started.
This lead to a highly scalable parallel implementation.

For B-trees on the other hand, the synchronization is a bigger
challenge since insertions are not restricted to updating a single
memory location. In the general case, keys and child pointers need
to be shifted and potentially parent nodes split and re-balanced. The
application of a fine-grained read/write locking scheme protecting
all the nodes potentially affected by an insert operation and releasing
locks as early as possible provided acceptable scalability on desktop
systems. However, on multi-socket server systems the continued
exchange of updates on the lock associated to the root node over
the inter-chip buses caused a severe slow-down in performance
and scalability. As a result, even with the fine-grained locking
parallelism on multi-socket systems did not provide any net gains in
performance.

Tool | Time [s] | Memory [MB]

C++ 2.0 91
bddbddb 6.5 30
uZ 340 1667
SQLite 12.2 126.9
Soufflé / B-tree (sequential) 1.26 25.6
Souftlé / B-tree (parallel) 0.42 26.3
Souffié / Trie (sequential) 0.38 3.5
Soufflé / Trie (parallel) 0.12 4.5

Table 1. Comparison of Datalog evaluation tools for random-graph
connectivity problem.

To overcome this limitation we adapted an optimistic locking
schema from databases. In this approach, every node in the tree is
annotated by a version number which will be updated upon every
modification. When a thread is reading a node while navigating the
B-tree during an insert operation, it is recording the version number
before starting its operation and comparing it after determining the
next node to navigate to. If the version number remained unchanged,
it continues by navigating to the resolved node. However, if the
version number changed, some other thread has modified the content
of the processed node while the read operation was in progress. Thus,
the obtained result may be wrong. To correct, the thread simply
restarts the read operation on the same node again.

Compared to the fine-grained locking, the optimistic locking
approach does not update any memory location (or lock state) when
there are no conflicts — which is the case in the vast majority of node
traversals. Thus, communication between sockets is significantly
reduced, leading to largely superior parallel scalability compared to
the fine-grained locking solution.

For our implementation we are utilizing the primitives provided
by OpenMP to mark corresponding loops to be processed in parallel.
Thus, the degree of parallelism can be controlled by the user.

6. Experimental Results

‘We have implemented our program synthesis techniques for Datalog
within Soufflé— a high performance Datalog engine for large-scale
program analysis. Soufflé has been designed for the highest perfor-
mance and scalability. Currently, the Soufflé project is undergoing
an open source licencing process and is expected to be released for
general use in the first half of 2016. The following sub-sections
provide experimental data regarding our system’s performance char-
acteristics compared to state-of-the-art Datalog engines that have
been used for static program analysis in literature.

6.1 Transitive Closure

Our first experiment targets the evaluation of our motivating example
introduced in Section 2. In this example, the transitive closure of a
random graph has been computed utilizing a variety of tools. The
experiments have been conducted on a 8 core Intel i7-5820K CPU
@ 3.30GHz. Table 1 summarizes the observed execution times and
memory requirements.

The C++ entry in the table corresponds to the implementation of
the transitive closure using standard C++ containers as outlined in
the motivation section. The results of the bddbddb and p1Z rows have
been obtained utilizing the corresponding tools. The SQLite evalua-
tion is based on the consecutive execution of SQL statements accord-
ing to the semi-naive evaluation scheme utilizing the in-memory
relational database system SQLite. All three represent manifes-
tations of distinct concepts for their internal data representation.
However, all of them, some severely, fail to compete with the naive
C++ implementation in terms of execution time and only bddbddb
manages to obtain the result by consuming less memory.



Tool | Time [hh:mm::ss] | Memory [GB]

bddbddb 0:30:00 5.7

uZ DNF DNF

SQLite 6:20:00 40.2
Soufflé (sequential) 0:01:15 7.5
Soufflé (parallel) 0:00:35 8.5

Operation [ %time | #calls
Inserts ~45% | ~ 200G
Membership Test | ~ 35% | =~ 180G
Range Queries ~15% | =~20M
Scans ~ 5% | <inlined >
Rest <1% -

Table 2. Comparison of Datalog evaluation tools for a context-
insensitive points-to analysis on the OpenJDK7 library.

In comparison, our Soufflé engine is capable to improve upon
the naive C++ performance by decreasing the execution time by
40% and using less then 1/3 of the memory requirements running
in a sequential, B-tree based mode. By using our Trie-based data
structure, an execution over 16x faster with less than 1/20 of the
memory requirements can be observed.

The significant execution time reduction of Soufflé compared to
the naive C++ version is based on the improved cache utilization due
to the employment of cache friendly, low overhead data structures,
the specialization of the involved data structures for the particular
use case, and the employment of fine-grained parallelization to
effectively and efficiently utilize concurrent hardware resources.

However, Soufflé’s higher level optimizations, in particular it’s
automated index selection capability, is not coming into effect in
this small transitive closure example. Neither is Soufflé’s capability
of managing relations comprising billions of tuples. For this, a large
scale real-world analysis needs to be considered.

6.2 A Real-World Benchmark

A points-to analysis (which program variable is pointing to which
object) is a core analysis for a variety of static program analysis,
including, escape analysis, loop-dependency analysis and security
analyses. The corresponding points-to analysis can be formulated
as a Datalog query. To evaluate the various elements contributing
to the performance of Soufflé we have evaluated the application of
a context-insensitive version of the points-to analysis on the entire
code base of the OpenJDK library containing 1.4M variables, 350K
heap objects, 160K methods, 590K invocations and 17K types.

Table 2 summarizes the performance characteristics of various
state-of-the-art tools for Datalog based program analysis for the
given problem statement. All of them have been processing the
same Datalog program comprising several dozen relations and rules
producing ~ 840M resulting tuples when being applied to the
OpenJDK?7 input set. The evaluations of the bddbddb, pZ and
SQLite and based analysis have been conducted on a 8 core Intel
Xeon E5-2690 v2 @ 3.0GHz, 128GB RAM server system due to
resource and licencing constraints, while the Soufflé experiments
have been conducted on a 4 core Intel i7-4790 CPU @ 3.6GHz,
32GB RAM desktop system. However, the huge performance gap
between the various approaches are far beyond what can arise from
the performance discrepancy of the hardware.

For pZ the size of the resulting Datalog query has been too large
to obtain results within a reasonable time (DNF = did not finish).
Also, the SQL engine based Datalog solver required a significant
amount of computation time, rendering it practically unsuitable for
the development of real-world, large scale analysis. bddbddb could
handle the query within much more reasonable time scales. For this
real-world benchmark Souffié is capable of computing the desired
result more than 34x faster then the best state-of-the-art solver — a
factor that moves the development of more sophisticated large-scale
static programming analysis from the realm of academic exercises
into practical reality.

Table 3. Runtime Profile of points-to Analysis run on OpenJDK7

6.2.1 Performance Breakdown

During the course of the development of Soufflé we have used the
context insensitive version of the points-to analysis as a benchmark
to trace the gradual improvement steps of our system. Thus, we can
provide additional insight on the specific gains that can be obtained
by integrating various optimizations.

Table 3 summarizes profiling data collected from the execution of
a single Soufflé based run of the points-to analysis on the OpenJDK7
dataset. As can be observed, the vast majority of time (> 99%) is
spent on operations on sets. In particular, insert operations and
membership tests, which are triggered several billion times, account
for = 80% of the overall execution time. Thus, the corresponding
operations have been a highly valuable target for optimizations.
Unfortunately, each evaluation only consumes fractions of a micro
second, leading to the necessity of resorting to a variety of low-level
optimization steps in the implementation as well as modifications
improving the cache utilization.

Figure 6 outlines the series of major development steps our sys-
tem was undergoing, visualizing the gradual reduction of execution
time and memory consumption.

The base line for our comparison is given on the left by the initial
version of the C++ code Soufflé has been producing for computing
Datalog queries. This initial version required =~ 850s and roughly
17GB of memory, which already constituted a vast improvement
over preexisting solvers. However, the subsequent improvement
steps could reduce the execution time by an additional 93% and
the memory consumption by up to 59% for the given real-world
benchmark.

The first optimization was reducing the management overhead
by reducing the number of maintained indices for each relation to a
minimum which reduced the execution time by ~ 200s. The next
major optimization refers to storing tuples in the index structure
if only a single index is required for a relation. This improved
cache efficiency, thus reduced the execution time by ~ 138s and the
memory consumption by ~ 7GB. It was followed by a switch to
a custom B-tree implementation (57s improvement) followed by a
sequence of low level optimizations including the manual re-write of
recursive code into iterative code (35s), and the reduction of control
flow dependencies — thus pipeline hazards — in the tuple comparison
operators (33s). To exploit the temporal locality of resulting query
operations, which frequently query sequences of nearby elements
in the data relations, we remember last accessed nodes as hints for
future operations. This resulted in avoiding redundant lookups (=
90% hit rate) and a run-time reduction of another ~ 122s. Next,
we customized the implementation of the binary search operation
frequently performed by B-tree operations. The effect was an
improved effectiveness of operations and a run-time reduction of
additional 50s. The utilization of a 3-way comparison instead of
consecutive binary comparison operators, the improvement of the
set-merge operation by ensuring that the smaller is added to the
larger set, the adaptation of node-split strategies to increase the fill
rate of nodes, and the utilization of locally available delta-sets as a
filter for membership tests decreased the run-time by an additional
~ 97s. The introduction of our Trie based data structure for binary
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Figure 6. Breakdown of Performance Improvements
Absolute Relative Tool | Time [hh:mm::ss] | Memory [GB]
Step Time [s] | Reduction [ Speedup bddbddb DNF DNF
semi-naive on SQL engine | 22800 - - Kz DNF DNF
C++ Encoding 850 —96% 26.8x SQLite DNF DNF
Index Consolidation 650 —24% 1.3% Soufflé (parallel, 8 cores) 6:44:08 825.77GB
A&D Tuning 75 —88% 8.7x - -
Parallelization 35 _53% 2.1x% Table 5. Comparison of Datalog evaluation tools for a context-
Total 35 —99.8% G5Ix sensitive points-to analysis on the OpenJDK?7 library.

Table 4. Performance Improvement Breakdown for context-
insensitive points-to analysis on OpenJDK7

relations reduced the execution time by an additional 22s and the
memory usage to 7.5G B. Finally, by parallelizing our engine we
managed to reduce the computation time to less than a minute on our
test system at the expense of sightly increased memory requirements.

Table 4 summarizes the incremental gains achieved over a SQL
based datalog engine by encoding queries in C++, minimizing the
number of utilized indices, conducting the manual tuning steps
on basic algorithms and data structures as outlined above, and
parallelization. Unfortunately, due to interdependencies between the
various optimization steps outlined in this section, their individual
impact can not be evaluated in more detail.

6.2.2 Comparison to Manual Implementation

Within recent work, the points-to problem over the OpenJDK library
has been investigated in detail and a specialized, graph based
algorithm for its efficient computation has been devised [11] in
Java. In particular, the proposed solution comprises specialized
data structures to effectively represent and compute the points-to
relation. The work has the groundbreaking capability of obtaining
the analysis results for the OpenJDK library in under a minute.
With our Datalog engine the same result on the same dataset
can be obtained utilizing a general purpose analysis infrastructure
within 35s on a commodity desktop system. This result provides an
indication on the competitiveness of our Datalog engine in regard to
manually encoded static program analysis.

6.3 Large-Scale Analysis

Our last experiment evaluates Soufflé’s capability of providing the
computational framework exceeding the practical capabilities of
state-of-the-art solvers when processing even more sophisticated

large-scale analysis. To that end, we have been processing a context-
sensitive points-to analysis on OpenJDK?7 build 147. The context-
sensitive analysis is a 2-Object-1-Heap points-to analysis [19] using
an open-world abstraction [2]. The evaluation has been conducted
on a § core Intel Xeon E5-2690 v2 @ 3.0GHz server system. Table 5
summarizes the obtained results.

Only Soufflé has been able to cope with the large-scale pro-
gram analysis problem for analyzing context-sensitive points-to on
OpenJDK.

7. Related Work

Datalog Engines. In this section we describe briefly survey state-
of-the-art Datalog engines and their use in the context of static
program analysis. bddbddb [37] is one of the most popular Datalog
engines for static program analysis. The main challenge in using
bddbddb for large systems relates to the issue of variable ordering.
As it is uses BDDs (binary decision diagrams) as the underlying
structure, choosing the right ordering is of paramount importance.
Otherwise, the analysis does not terminate within reasonable bounds.
In our experimentation the default variable ordering did not work
for the JDK but after significant exploration we were able to get
it working. However, this variable ordering was not useful for the
analysis of a different version of the JDK. Such repeated exploration
to find suitable variable orderings is too time consuming for bddbddb
to be useful in our context. uZ [16] is another tool that does very well
on small examples. However, the tool was unable to handle the large
data sets generated during the analysis of the JDK. However, our
approach still improves on its performance. A common difference
between the aforementioned Datalog engines and Soufflé is that
they perform Datalog evaluation whereas we use Datalog as a
specification to synthesize a C++ program.

In [31] and [33], source-to-source translators from Datalog to
SQL were introduced. Unfortunately, current relational database



management systems cannot cope with the vast amounts of data and
complex queries that arise translating Datalog to SQL. Other systems
such as IRIS [6] and DLV [5] provide support for Datalog execution.
Both of them are bottom-up rule inference engines. However, they
cannot be used as a stand-alone system. They provide the basic
knowledge base component and the actual application needs to be
written in a language like C++. Datalog Education System [30] is a
deductive database system that supports querying via both Datalog
and SQL. Their focus is to support SQL queries in Datalog and
thus translate SQL into Datalog. Socialite [32] provides extensions
to Datalog to facilitate parallel execution. The aim is to speed up
various graph algorithms and hence provide support for features
such as aggregation. The programmer needs to provide suitable
annotations to enable effective parallelization on distributed systems.
None of these tools are suitable for static program analysis either
due to their design targeting different application domains or will
have performance issues tackling large data with billion tuples in
relations.

Liu and Stoller [22] describe a general method for transforming
Datalog rules to SETL programs. Their focus is on guaranteed
worst-case time and space complexities. They use a mixture of
arrays and linked list to manipulate the various sets. While this is
useful in guaranteeing worst-case complexities their experiments
are on relatively small data sets. Thus, it is not clear if their
approach can handle large data sets. There are other approaches
to implementing Datalog engines using GPUs [24] that harness
the parallel capabilities of accelerators. In their work, tables may
store the same tuple several times, and enforcing a set constraint
at a later stage becomes costly, dominating the overall execution
time. The duplication of tuples depletes the GPU memory quickly,
and memory limitations of contemporary GPUs just amplify the
short-coming of their approach for large-scale program analysis.

Synthesis of Analyzers. In our context, program synthesis refers
to the classical notion for it [21] i.e., constructing an executable
program (i.e., program analyzer) from a logical specification (i.e.,
in Datalog). We refer the reader to [20] for a survey of program
synthesis techniques and uses. While our framework can also be
used to generate C++ programs from Datalog specifications, our
focus in this paper is efficient synthesis of program analyzers, i.e, we
generate C++ programs that take a program as a set of relations and
produce analysis results in output relations. Several frameworks have
been cast as a synthesis of analyzers and/or verifiers e.g.,[14, 17],
and to a lesser extent [16, 23, 27]. While our approach shares
similarities of specifying the analysis in a logical specification
(Datalog Horn clauses) we generate a stand-alone C++ analysis
tool rather than solving clauses within the framework/engine itself.
As shown in our experiments, this results in significant performance
gains. The approach in [7], like us, uses partial evaluation of Datalog
to improve performance. Additionally, several compilers perform
efficient code generation using synthesis techniques [18, 26]. This
body of work, like our technique, synthesizes efficient code form
a logical specification; unlike our work, these approaches generate
general programs optimized at the assembly level, where as we
generate analysis tools optimized at the C++ level, adhering to a
Datalog specification.

8. Conclusion

We have presented a Datalog-based analysis framework that instead
of evaluating Datalog, uses the semi-naive algorithm as a synthesis
scaffold to produce analyzer instances. Our technique converts
Datalog specifications to efficient, parallel C++ code. As a result,
we are able to analyze very large code bases and perform analyses
considerably more efficiently then the available state-of-the-art
Datalog engines. While our work focuses on static analyzers, we

believe that our approach can also be used as an efficient general
purpose engine for compiling Datalog to efficient C++ translations.
Our work has been realized in the Soufflé framework which is
currently undergoing an open-source process and is estimated to be
publicly available in the first half of 2016.
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