
Building a Join Optimizer for Soufflé

Samuel Arch1(B) , Xiaowen Hu1 , David Zhao1 , Pavle Subotić2 ,
and Bernhard Scholz1

1 The University of Sydney, Sydney, Australia
{sarc9328,xihu5895,dzha3983}@uni.sydney.edu.au,

bernhard.scholz@sydney.edu.au
2 Microsoft, Belgrade, Serbia
pavlesubotic@microsoft.com

Abstract. Datalog has grown in popularity as a domain-specific lan-
guage (DSL) for real-world applications. Crucial to its resurgence
has been the advent of high-performance Datalog compilers, including
Soufflé. Yet this high performance is unobtainable for users unless they
provide performance hints such as join orders for rules.

In this paper, we develop a join optimizer for Soufflé that automat-
ically computes high-quality join orders using a feedback-directed opti-
mization strategy: In a profiling stage, the compiler obtains join size
estimates, and in a join ordering stage, an offline join optimizer derives
cost-optimal join orders. The performance of the automatically optimized
joins is demonstrated using complex real-world applications, including
DOOP, DDISASM, and VPC, surpassing the performance of un-tuned
join orders by a geometric mean speedup of 12.07×.

Keywords: Datalog · Query optimization · Compilers

1 Introduction

In recent years, Datalog [1,13] has evolved from a recursive database query
language to a domain-specific language (DSL) for crafting complex industrial-
strength applications, including static program analysis [11,29], network analy-
sis [7], smart contract de-compilation [21], and binary disassembly [18]. Datalog
can express complex algorithms with a collection of relations and recursive rules.
These applications expressed in Datalog are performance-sensitive for real-world
workloads. For example, a static analysis tool such as DOOP [11] may run on
software projects with millions of lines of code. Hence, Datalog used as a DSL
necessitates compilation techniques for efficient execution [35].

In a bottom-up Datalog system, logic rules can be executed more than once
due to recursion and operate over very large data sets. Hence, the runtime of
rules is paramount for efficiency. The task of a join optimizer is to find high-
quality join orders, i.e., the order in which to join the relations in a rule. There
are a factorial number of possible left-deep join orders in the number of atoms

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Villanueva (Ed.): LOPSTR 2022, LNCS 13474, pp. 83–102, 2022.
https://doi.org/10.1007/978-3-031-16767-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16767-6_5&domain=pdf
http://orcid.org/0000-0001-7282-1658
http://orcid.org/0000-0002-4577-3360
http://orcid.org/0000-0002-3857-5016
http://orcid.org/0000-0002-6536-3932
http://orcid.org/0000-0002-7672-7359
https://doi.org/10.1007/978-3-031-16767-6_5

84 S. Arch et al.

in the rule, and the performance gap between good and bad join orders can be
several orders of magnitude [30].

While automatically finding join orders is well-studied [20,33,36] and known
as query optimization in the database community, databases are different to
Datalog compilers. For instance, databases normally make no assumptions about
future workloads and thus find join orders on the fly at run-time, which incurs
overheads. Moreover, database workloads rarely contain recursion. Thus, these
techniques do not support recursive rules very well. As a result, the database
community has little to offer for implementing Datalog compilers whose challenge
lies in the repeated execution of unchanging, recursive rules on different inputs
with small variations [44].

For this reason, high-performance Datalog compilers such as Soufflé [26] allow
users to optimize join orders using manual annotations at design time. This app-
roach eliminates the overhead of finding join orders at run-time, instead shifting
the burden to the developer. However, for non-experts, finding the right join
order for large, complex rules can be an insurmountable task. To illustrate the
challenge of finding fast join orders, we present a Datalog rule from the DDIS-
ASM [18] project, a binary dis-assembler written in Soufflé. DDISASM disas-
sembles stripped binaries into re-assemblable assembly code in a series of anal-
yses. The rule we select is from the Data Access Pattern (DAP) analysis where
the atom data_access_pattern(Address,Size,Multiplier,FromWhere) rep-
resents a data access on an Address of size Size with multiplier Multiplier from
address FromWhere. The rule derives new data accesses by propagating previous
accesses, incrementing the address value by the multiplier to more accurately
disassemble the binary.

For this rule there are 24 different join orders amongst the 4 positive atoms.
We write the rule in two logically equivalent ways, with the order of the first 2
atoms swapped, illustrating 2 different join orders. In this rule, Soufflé joins the
relations in the order in which they are written from left to right, but in general,
the join order does not always coincide with the specified order of a rule1.

propagated_data_access(EA+Mult,Mult,EA_ref) :-
% Propagate previous access by multiplier
data_byte(EA+Mult,_),
propagated_data_access(EA,Mult,EA_ref),
% No collision with next data access pattern
!possible_data_limit(EA+Mult),
% No collision with other data access pattern
last_data_access(EA+Mult,Last),
Last > EA,
% No direct collision with data access
data_access_pattern(Last,Size,Mult,_),
Size+Last <= EA+Mult.

propagated_data_access(EA+Mult,Mult,EA_ref) :-
% Propagate previous access by multiplier
propagated_data_access(EA,Mult,EA_ref),
data_byte(EA+Mult,_),
% No collision with next data access pattern
!possible_data_limit(EA+Mult),
% No collision with other data access pattern
last_data_access(EA+Mult,Last),
Last > EA,
% No direct collision with data access
data_access_pattern(Last,Size,Mult,_),
Size+Last <= EA+Mult.

Fig. 1. A rule from DDISASM written in two ways

When executing the rule in DDISASM, during disassembly of the gamess
binary from the SPECCPU 2006 suite of binaries [22], Soufflé executes the first
1 Soufflé relies on a greedy heuristic [15] at compile-time, selecting the next atom to

join one at a time with the largest fraction of bounded attributes.

Building a Join Optimizer for Soufflé 85

join order in 120.9s and the second join order in 0.02s, opening a performance gap
of over 6000×. An expert user may provide join orders manually by using .plan
statements [16] to hand-tune rule execution. However, finding good join orders is
a tedious and time-consuming process, and breaks performance declarativeness.
Users are expected to have a deep understanding of the rule execution strategies
in Soufflé, if performance is needed.

In this paper, we present an offline feedback-directed strategy [40] for join
ordering in Datalog compilers. With our new strategy we can derive high-quality
join orders automatically. The strategy consists of a profiling and a join ordering
stage. The profiling stage produces estimates for the expected number of tuples
for each candidate join [36] using a representative input. The estimates are later
ingested in the join ordering stage to derive high-quality join orders.

Our approach has the following advantages. First, the rule-set is known ahead
of time, so we can perform lightweight program-specialized profiling of the Dat-
alog program collecting statistics only for the smallest set of necessary join size
computations. Second, the join ordering is performed at compile-time, so that
the compiler can search for the cost-optimal join order without incurring any
run-time overheads. Third, our approach uses a recursive rule cost model, guar-
anteeing cost-optimal join orders for recursive rules by relying on per-iteration
statistics from the instrumented execution. Fourth, our approach is robust; the
join orders generated by a representative input tend to generalize over large
changes to the input.

We have implemented our new join optimizer in Soufflé [26] as an open-
source contribution included in Release 2.3 [17]. We have conducted experiments
on industrial-strength applications including DOOP [11], DDISASM [18] and
VPC [7] and our join optimizer derives join orders outperforming hand-tuned
ones by a geometric mean speedup of 1.09× and un-tuned orders by 12.07×.
The contributions of this work are summarized as follows:

1. A novel adaptation of the feedback-directed optimization strategy for the join
ordering problem.

2. A program-specialized profiling strategy for instrumenting Datalog programs
to collect accurate join size estimations with automatic index selection.

3. A join optimizer with a recursive rule cost-model that finds minimum cost
join orders for both recursive and non-recursive rules.

2 Background and Motivating Example

Optimizing joins in compiling Datalog engines is challenging and highly depen-
dent on the rule evaluation strategy. Modern engines, such as Soufflé, frequently
use a stratified bottom-up evaluation [1]. For stratified Datalog, an extended
dependency graph is built for which the nodes are relations, and edges emanate
from the head atoms to the body atoms of rules. The program can be stratified
if and only if the dependency graph is free of cycles containing negated atoms. A
stratum is a strongly connected component that may contain multiple mutually
recursive relations (and their rules). Each stratum is computed by evaluating the

86 S. Arch et al.

rule-set in a fixpoint loop, terminating when the rules fail to produce new facts
and the strata are ordered according to their topological number. Datalog engines
adopt semi-näıve evaluation [8] for computing the facts of each stratum. Semi-
näıve evaluation has a fixpoint loop for each stratum and finds newly derived
facts by considering only the new facts from the previous iteration of the fixpoint
loop. As a result, recursive relations in the body of rules can be replaced by delta
relations where a delta relation only contains the new facts derived from the last
iteration. Therefore, a recursive rule An+1(Xn+1) :− A1(X1), ..., An(Xn) with
n mutually recursive relations in the body, results in n versions of the recursive
rule with semi-naive evaluation as follows:

new An+1(Xn+1) :− delta A1(X1), A2(X2), ..., An(Xn).
new An+1(Xn+1) :− A1(X1), delta A2(X2), ..., An(Xn).

. . .
new An+1(Xn+1) :− A1(X1), A2(X2), ..., delta An(Xn).

For the motivating example in Fig. 1, Soufflé places each semi-näıve rule-
version into the same stratum, evaluating them in a fixpoint loop until no new
fact is found. Since this rule has only one mutually recursive relation in the
body, it has only one rule-version to compute. Hence the rule will be evaluated
as shown in Fig. 2 with the semi-näıve rule-version evaluated inside the fixpoint
loop.

delta propagated = propagated

while delta propagated �= ∅ do

Eval(new_propagated(EA+Mult,Mult,EA_ref) :-

delta_propagated(EA,Mult,EA_ref),

data_byte(EA+Mult,_),

...)

delta propagated = new propagated

propagated = propagated ∪ new propagated

new propagated = ∅

Fig. 2. Semi-näıve evaluation for the motivating example with
propagated data access abbreviated as propagated

To evaluate each semi-näıve rule-version in the fixpoint loop, Soufflé uses
indexed nested loop joins due to runtime and memory efficiency [41]. To evalu-
ate each rule-version, the join order determines the loop-nest, placing the first
relation in the outer-loop, the next relation in the next loop and so forth, con-
tinuing in this order until the entire loop-nest is unrolled. Finally, optimizations
are applied to the loop-nest, i.e., rewriting scans over relations with filters into
indexed scans. The join order is also known as a left-deep one since the result of
each join is pipelined directly as input into the next join operator. For the two

Building a Join Optimizer for Soufflé 87

formulations of the Datalog rule, Soufflé uses the order of relations as they are
written in the rule resulting in the loop-nests shown in Fig. 3.

Examining the loop-nests in Fig. 3, the first join order iterates the cross-
product of data byte and delta propagated data access (abbreviated as
delta propagated), filtering for tuples where the address accessed on data byte
is that of delta propagated with the added multiplier, i.e., NextEA = EA+Mult.
Hence, the complexity of the two outer loops of the loop-nest is of the order
O(|data byte| × |delta propagated|) excluding logarithmic factors. By com-
parison, using the second join order, delta propagated is iterated in the outer
loop grounding EA and Mult. Then, an efficient index scan can be performed
on data byte to quickly check if there exist any tuples with address EA+Mult.
Thus, the corresponding complexity of the two outer loops of the loop-nest is
O(|delta propagated|).

We generated a profile for the gamess input from the SPECCPU2006 bench-
mark suite for DDISASM. From the profile, we observe that this rule produces
only 53 tuples. However, despite producing almost no output, the first join order
takes 120.9s to complete, iterating for each of the 1.5 million tuples of the
data byte relation through (on average) 567 tuples in the delta propagated
relation. On the other hand, the second join order only iterates through
delta propagated before using an index to check if a matching tuple exists in
data byte. As a result, the join order terminates in only 0.02s, a difference of
over 6000×. Therefore, the above example demonstrates the utmost importance
of good join orders for the performance in Soufflé.

Due to the complex semi-naive rule versions with constantly changing delta
relations and the factorial number of possible left-deep join orders, manually
finding high-quality join orders is tedious and time-consuming, as shown in the
example. As a result, users require a deep understanding of the engine’s internal
rule execution strategies to find good join orders. Even then, an (expert) user
only has a limited time budget for experimentation since there are too many
potential join orders to explore. Therefore, users typically move on when they
find a sufficiently fast join order and do not fully explore the solution space.
Given that the performance gap is so vast between low-quality and high-quality
join orders, it is paramount from a usability and a performance viewpoint that
Datalog engines such as Soufflé find high-quality join orders automatically with-
out user intervention.

for all t1 ∈ data byte do
for all t2 ∈ delta propagated do

/* NextEA = EA+Mult */
if t1(1) = t2(1) + t2(2) do
...
insert (...) into new propagated

for all t1 ∈ delta propagated do
/* EA+Mult */
if (t1(1) + t1(2),) ∈ data byte do
...
insert (...) into new propagated

Fig. 3. Indexed loop-nests for the two formulations of the motivating example

88 S. Arch et al.

3 A Join Optimizer for Soufflé

Program Rule
Instrumenter

Instrumented
Program

Engine Facts

Join Size
EstimatesProfiling

Stage

Join-Ordering
Stage

Join
Optimizer

Optimized
Program

Fig. 4. The FDO Strategy for Join Optimization in Soufflé

To automatically derive join orders for the user, we propose an adapted
Feedback-Directed Optimization (FDO) strategy [40] for join ordering. For our
join optimizer, the FDO strategy has two stages (shown in Fig. 4), a profiling
stage and a join-ordering stage. The profiling stage compiles and runs the Dat-
alog program, using a representative input. As a side-effect of the run, statistics
about the execution are produced. The join-ordering stage uses these statistics
(the feedback) as input for its compilation. The statistics provide the join opti-
mizer with estimates of the size of each candidate join and the join optimizer
then uses these join size estimates and its cost model to derive cost-optimal left-
deep join orders for all rules in the program using Selinger’s algorithm [36]. The
key challenges that we address with our join optimizer are:

(1) Efficiently collecting a potentially exponential number of join size estimates.
(2) Developing a cost-model for recursive (and non-recursive) rules.

We address Challenge (1) with a program-specialized profiling strategy that
efficiently collects only the necessary statistics. We address Challenge (2) by
introducing a recursive rule cost model for selecting join orders that computes
join size estimates on an iteration-by-iteration basis. Note that for our approach,
a representative input (i.e., a training data set) must be chosen in the profiling
stage so that the produced join orders do not degrade the application’s per-
formance with normally occurring inputs. We demonstrate in Sect. 4 that our
approach can generalize well (i.e. a representative input performs within 10% of
the optimal for DOOP and DDISASM), and most inputs are representative.

3.1 The Profiling Stage

The profiling stage’s task is to efficiently collect join size estimates for the join
ordering stage. The join size estimate of an atom depends on its position in a

Building a Join Optimizer for Soufflé 89

join order. For example, recall the loop-nest of Fig. 3 for the motivating example.
The join size estimates for atoms data byte and delta propagated can change
depending on whether they are placed in the first or second loop in the join
order. The cost differences stem from the join attributes of the atoms, which
are bound by values from outer loops and/or constants. In the example, the
join uses the attributes EA and Mult bound by delta propagated in the outer
loop to join data byte using the value EA+Mult. The first column of relation
data byte becomes a join attribute with value EA+Mult, and we want to estimate
the number of tuples in data byte that have this value.

The database literature [12,19] introduced the concept of selectivity, which
measures the degree to which a predicate filters tuples. An accurate measure for
selectivity can be found by projecting the set of tuples on the join attributes and
counting the number of projected tuples. Then, the join size can be estimated
by dividing the relation size by the number of projected tuples. More generally,
the join size estimate can be expressed for an atom as,

fa1,...,ak
(R) =

|R|
|πa1,...,ak

(R)| (1)

using relational algebra [14] notation where a1, . . . , ak are join attributes2 of the
atom with relation R, where πa1,...,ak

(R) is the set of tuples in R projected on
the join attributes and where |R| is the cardinality of relation R. Note that the
formula can be refined for constant attributes filtering out tuples that whose
constants do not match.

According to Eq. 1, the join size estimate depends on which of the relation’s
attributes become join attributes, i.e., a1, . . . , ak. When relations appear later in
the join order, more attributes are bound; hence, the join size estimate becomes
smaller. Note that there could be 2m different join size estimates where m is
the number of attributes of relation R (and even more considering constant
attributes as well). However, only a small number of join size estimates are
necessary to cover all possible join orders of a rule that may occur for a concrete
rule. Since the rule set is given in a Datalog compiler, our program-specialized
profiling strategy can compute the collection of potential join attributes ahead
of time.

The algorithm for determining the collection of join size compu-
tations employs a variation of the sideways information passing (SIP)
graph [1,9]. The graph Gρ is constructed for a rule ρ of the shape
A0(X0) :− A1(X1), . . . , An(Xn). The vertices of the graph are the body atoms
Ai(Xi) for all i, 1 ≤ i ≤ n. By abuse of notation, we assume that the arguments
Xi are sets of variables (ignoring constants) that occur as arguments. There is
a directed edge from one atom Ai to another Aj if its arguments Xi bind at
least one argument in Xj . The set of incoming edges is denoted by function in,
i.e., Aj ∈ in(Ai). We denote the bindings variables themselves by bvars(Aj , Ai)
between two atoms Ai and Aj . We depict the SIP graph for the motivating
example in Fig. 5.
2 Not necessarily all attributes are join attributes.

90 S. Arch et al.

delta_propagated(EA,Mult,EA_ref)

data_byte(EA+Mult,_) last_data_access(EA+Mult,Last)

data_access_pattern(Last,Size,Mult,_)

{EA,Mult} {EA,Mult}{Mult}{Mult}

{Last}{Last}

{EA+Mult}{EA+Mult}

Fig. 5. The SIP graph for the motivating example

Only an atom’s neighbours with incoming edges in the sideways information
passing graph control the join attributes. From this observation, we can construct
a simple algorithm that determines the collection of join attributes. Algorithm 1
computes for each relation the possible join attributes that can be bound in the
SIP graph for a rule, i.e., the candidate joins on that relation. The algorithm
considers for each rule ρ in the program P , its SIP graph Gρ. Each atom Ai in
the SIP graph finds its corresponding relation. Set B represents a collection of
sets of variable bindings for all potential atoms Aj that could be placed before
Ai. We perform a power-set construction for all possible subsets of set B. We
make the union U of all pi and compute J the join attributes in Ai bound by
U . Finally, we add the join attribute set to the result set SR.

Algorithm 1 ComputeUniqueJoins(P)
1: Let S be empty for all relations R in P , i.e., SR = ∅
2: for all ρ ∈ P do
3: for all Ai ∈ Gρ do
4: Let R be the relation for Ai

5: Let B = {bvars(Aj , Ai) | Aj ∈ in(Ai)} be the possible bindings passed to Ai

6: for all pi ∈ P(B) do
7: Let U =

⋃
pi be all bindings from a subset of incoming edges

8: Let J be the attributes in Ai bound by U
9: SR = SR ∪ J

10: return S

We illustrate the execution of Algorithm 1 on the motivating example when
it encounters the atom data_access_pattern(Last,Size,Mult,_). For this
atom, there are two incoming edges, from delta_propagated(EA,Mult,EA_ref)
and last_data_access(EA+Mult,Last). Therefore, the set of all possible bind-
ings B in the algorithm will hold {{Mult}, {Last}}. Any combination of these
bindings can be possible (considering whether these atoms appear before or after
data access pattern in the join order). Therefore, the power-set of B is enu-
merated {{{Mult}}, {{Last}}, {{Mult}, {Last}}}. Then for each subset, the
bindings are collected with a set union operation to produce the set U . Set U

Building a Join Optimizer for Soufflé 91

will take on the values {Mult}, {Last}, {Mult, Last} for each subset. Since Last
corresponds to the first attribute, and Mult corresponds to the third attribute,
each binding will correspond to the join attributes {3}, {1}, {1, 3}. The set SR

then contains for the relation last data access, these sets of join attributes.
The process continues for the remaining atoms, producing sets of join attributes
(and hence candidate joins) for each relation.

We use the solution set S of Algorithm 1 to instrument the Datalog program
at compile time. The instrumentation injects join size computations into the
execution that will be evaluated during run-time to produce each join size esti-
mate. The instrumentation of the program differentiates between recursive and
non-recursive relations. For recursive relations, the join size computations are
placed inside the fixpoint loop of the stratum (as determined by the semi-naive
evaluation algorithm [8] explained in Sect. 2). Figure 6 shows the instrumented
semi-näıve evaluation of the Datalog compiler. The join size computations on
delta propagated are placed in the fixpoint loop and the join size computations
for other non-recursive relations, e.g., data byte are placed in earlier strata as
soon as they are fully computed.

delta propagated = propagated

while delta propagated �= ∅ do
EstimateJoinSize(delta propagated, { })
EstimateJoinSize(delta propagated, {2})

Eval(new_propagated(EA+Mult,Mult,EA_ref) :-

delta_propagated(EA,Mult,EA_ref),

data_byte(EA+Mult,_),

...)

delta propagated = new propagated

propagated = propagated ∪ new propagated

new propagated = ∅

Fig. 6. The instrumented semi-näıve evaluation for the motivating example

Computing Join Size Estimates. The join size computations are evaluated at
run-time in the profiling stage to derive the join size estimates. Each join size
estimate is found by counting the number of tuples in R and counting the unique
tuples after the projection of R onto the join attributes (cf. Eq. 1). A naive
way to compute the number of unique keys comprises the following steps: (1)
projecting every tuple in the relation onto the join attributes, (2) sorting the
projected tuples, and (3) iterating and counting the number of duplicates (and
hence unique tuples). Note that the sorting step can be avoided by assuming
that the tuples are already sorted on the join attributes ahead of time.

92 S. Arch et al.

However, Soufflé’s machinery facilitates a more efficient approach. Soufflé rep-
resents each relation R as a collection of multiple in-memory B-Tree indices [27].
Each index for a relation totally orders the tuples in R using a lexicographical
ordering �, i.e., � = 1 ≺ 2 would order tuples by attribute 1 then break ties
using attribute 2. For each join size estimate, we would like to find an index
for R where its lex-order � has the set of join attributes as a prefix, ensuring
that the tuples projected on the join attributes will be traversed in sorted order.
When the attributes for a join size form a prefix in the lex-order, we say that
the join size estimate is covered by the index. To ensure every join size estimate
is covered by an index, we can rely on Soufflé’s automatic index selection algo-
rithm [41]. The algorithm inspects the joins on each relation (called primitive
searches) and ensures that each can be covered by an index, using the minimum
total number of indexes for each relation. To achieve the same result with join
size estimates, we represent each estimate as a primitive search with the same
set of attributes, which guarantees that an index will cover it, eliminating the
sorting step entirely.

Algorithm 2 EstimateJoinSize(R, J)
1: Let J be the set of join attributes.
2: Let Dup = 0 be the number of duplicates.
3: Let R� = LookupIndex(R, J)
4:
5: for all Curr ∈ R� do
6: if πai∈J(Prev) = πai∈J(Curr) then
7: ++Dup

8: Prev = Curr
9: return |R�|

|R�|−Dup
.

An outline of the join size computation is shown in Algorithm 2. To extend
the algorithm for constant join attributes, R� is first filtered for the tuples satis-
fying the constant attributes. Considering EstimateJoinSize(delta propagated,
{2}), Algorithm 2 will execute as follows. Firstly, an index R� will be found with
the set of join attributes {2} as a prefix. Since the relation has arity 3, the pos-
sible index orders are: � = 2 ≺ 1 ≺ 3 or � = 2 ≺ 3 ≺ 1 over the attributes
of the relation. Next, the index is traversed in order, comparing the attribute
in position 2 with the previous tuple. Since the index is sorted on attribute 2
first, duplicate values will appear in sequence. Finally, the relation size divided
by the number of unique values on attribute 2 is retrieved as the estimated join
size. For the gamess fact-set, on the first iteration, |R�| = 31, 615 tuples and
|R�| − Dup = 23 unique keys. Hence the expected size of the join for the first
iteration on attribute 2 is 31,615

23 = 1375 tuples (rounding up). These join size
estimates for each candidate join order can then be used to guide the cost model
in the join ordering stage to find high-performance join orders.

Building a Join Optimizer for Soufflé 93

Note that multiple join size computations can be covered by the same
index. For instance, data_access_pattern(Last,Size,Mult,_) has the join
size computations ∅, {3}, {1}, {1, 3}. Instead of sorting 4 times (creating 4 dis-
tinct indexes), the 2 indexes � = 3 ≺ ... and � = 1 ≺ 3 ≺ .. can cover them.
Hence, our indexing technique for join size estimates creates little overhead for
the profiling stage, producing the necessary statistics for the join ordering stage.

3.2 The Join Ordering Stage

The problem of finding join orders is well-known in the database literature [24,
25,30,33,37] as part of query optimization. A query optimizer’s task is finding
the fastest query plan (i.e. the fastest way of executing a query) efficiently using
a cost-model [36]. The challenge is that each query has n! possible left deep joins
when there are n relations to join. In addition, for each possible join order, each
relation can be accessed using different methods, i.e., a hash-join, sort-merge
join, nested-loop join or a scan of the entire relation. In the context of Soufflé,
every relation is accessed using indexed nested loop joins, and, therefore, each
join order corresponds to exactly one query plan. However, there are still n!
possible left-deep join orders to consider.

{1, 2}

{1} {2}

[2 → 1]

[1] [2]

Fig. 7. An illustration of Selinger’s algorithm which maps sets of atoms to minimum
cost join orders

Selinger [36] observed that finding a minimum cost left-deep join order can
be achieved without explicitly considering all n! possible candidates. The insight
is that if a join order for a subset of relations is sub-optimal, it can never appear
in the optimal join order. Hence, the optimal join order can be found inductively
through dynamic programming by considering the optimal join order for every
subset of relations. The process is shown in Fig. 7 to join 2 relations. First, each
subset of size 1 corresponds to a single minimum cost join order. Next, for the
subset {1, 2}, the algorithm considers removal of one relation i.e. the sets {1}
and {2}. For each of these subsets, it considers the minimum cost join order
found for them, i.e. [1] and [2], and adds this to the cost of extending the join
order to include the removed relation, i.e. [1 → 2] or [2 → 1]. In this example,
the cost of [2 → 1] is cheaper and is saved, with [1 → 2] never being considered
further. This process continues up the lattice until the minimum cost join order
for all relations is found, and the algorithm terminates. The algorithm has a
complexity of O(n × 2n) since there are 2n subsets to consider, and each subset
must consider O(n) join orders from one level below. Hence, Selinger’s algorithm

94 S. Arch et al.

substantially improves upon the brute-force approach of considering all n! left-
deep join orders.

Selinger’s algorithm (and other query optimization strategies) are designed
for queries without recursion. Hence the literature offers little guidance for find-
ing join orders for recursive rules. One approach would be to treat each recursive
rule as if it were non-recursive, i.e. by taking the average size of a delta relation
across all of the iterations of a given rule and using this average to drive the cost
model. The disadvantage of this approach is that Selinger’s algorithm would no
longer guarantee high-quality join orders. For instance, a delta relation may be
very large for the first iteration of the rule and then very small for subsequent
iterations (as less new knowledge is derived). If the rule is executed for many
iterations, placing the delta relation at the beginning of the join order is usually
the most efficient. However, since the initial size of the delta relation is very high,
its average might still be very high, and the join order chosen won’t place the
delta relation first, leading to worse performance. Although more sophisticated
aggregate statistics could be used (for example, taking the geometric mean),
any aggregate would fail to capture the costs for rules with multiple recursive
relations that grow and shrink throughout different iterations.

To address this challenge, we develop a recursive rule cost model for Selinger’s
algorithm, which maintains accurate statistics for each candidate join on an
iteration-by-iteration basis. Our approach relies on the fact that join size esti-
mates are computed per iteration during the profiling stage as join size com-
putations are placed inside the fix-point loop for each stratum. Under our cost
model, the tuples for a particular candidate join are represented by a vector of
length I where I is the number of iterations of the rule. Under our model, the
cost of executing any particular join order is calculated as follows:

CostToJoin({R1, . . . , Rk}, S) = CostToJoin({R1, . . . , Rk})
+ Arity(S)

×
I∑

i=1

TuplesFromJoini({R1, . . . , Rk})

× ExpectedJoinSizei(S, J)

The cost to join relations {R1, . . . , Rk} with a new relation S is the cost
to compute the previous join added to the new join cost. The new join cost is
then calculated as the arity of the new relation S multiplied by the sum of tuple
accesses across all i iterations from 1 to I by the join. For each iteration i, the
number of tuples is calculated as the number of tuples from the previous join
(the number of tuples from the outer loop) multiplied by the expected join size
of S for this iteration, using join attributes J grounded by the previously joined
relations.

To illustrate our approach, consider joining the first two atoms in the moti-
vating example in Fig. 1. The algorithm estimates the cost of each choice between
candidate join orders, as shown in Fig. 8. The cost of (1, 2) (the left path shown

Building a Join Optimizer for Soufflé 95

{ }

{1} {2}

{1, 2}

scan
data byte

scan
delta propagatedi

scan
delta propagatedi

indexed lookup on
data byte

Fig. 8. The possible paths (and hence join orders) for the motivating example (Color
figure online)

in red) with the cost model described previously is:

Arity(data byte) ×
I∑

i=1

|data byte|

+ Arity(delta propagated) ×
I∑

i=1

|data byte| × |delta propagatedi|

For the right path up the lattice (shown in blue) for order (2, 1), the cost is:

Arity(delta propagated) ×
I∑

i=1

|delta propagatedi|

+ Arity(data byte) ×
I∑

i=1

|delta propagatedi| × 1

Since the indexed lookup using the second join order only accesses a sin-
gle tuple, the join order [2 → 1] is cheaper than [1 → 2] and saved. For the
remaining atoms in the rule, the process continues up the lattice using dynamic
programming, finding join orders for larger subsets of atoms by using the min-
imum cost join orders previously computed for each smaller subset. Eventually,
the cheapest path up the lattice is found, corresponding to the minimum cost
join order.

Overall, our adapted usage of Selinger’s algorithm increases its time com-
plexity from O(n×2n) where n is the number of positive atoms to O(n×2n ×I)
where I is the number of iterations. However, the advantage of this approach is
that the join sizes (and hence costs) for each iteration are considered separately,
and the total cost is minimized, allowing the optimizer to select the cost-optimal
join order for recursive rules.

Note that our join optimizer still finds high-quality join orders for rules that
contain negated atoms, even though they are not considered explicitly in the
algorithm. First, the join optimizer finds the join order considering only the
positive atoms and unrolls the rule into a loop-nest. Then, the negated atoms,

96 S. Arch et al.

which are evaluated as existence checks (see Sect. 2), are hoisted as high as
possible in the loop-nest so that they can be evaluated as eagerly as possible.
Since negated atoms act as sinks, they don’t produce tuples in the loop-nest
and hence don’t affect the cost of a candidate join (which is determined by the
number of tuples it generates). Therefore, our join optimizer performs well for
rules with negated atoms unless the rule can terminate early by better placement
of a negated atom, i.e. no tuples satisfy the negated atom.

4 Experimental Evaluation

We have conducted several experiments to understand the quality of the pro-
posed join optimizer for Soufflé. Specifically, we aim to answer the following
questions:

1. What is the performance of the join optimizer in comparison with current
join ordering heuristics in Soufflé?

2. Are the orders that the join optimizer produces on given training data sets
robust for different inputs?

3. What is the overhead of the profiling and join ordering stages?

Experiments are run without virtualization using an AMD Ryzen Threadripper
2990WX (3GHz 32-Core Processor). The operating system is Ubuntu 20.10, with
programs compiled using GCC 10.30. All performance-related benchmarks are
run in single-threaded mode and executed three times for reliability.

We evaluate the join optimizer on the following industrial-strength Datalog
applications consisting of hundreds of rules/relations. First, DOOP [11] is a
framework supporting various types of static analysis of Java programs. We run
the context-insensitive analysis on the Java programs present in the DaCapo
[10] benchmark. Second, DDISASM [18] is a tool that transforms stripped
binaries into re-assemblable assembly code through a series of analyses written
in Datalog. We run DDISASM on the SPECCPU 2006 [22] suite of binaries.
Third, Virtual Private Cloud (VPC) [7] is a benchmark taken from a real-
world network security analysis framework deployed in Amazon Web Services.

Join Optimizer Performance. We compare the performance of Soufflé’s heuristic
join orders with the performance of the new join optimizer. Note that DOOP
and DDISASM are hand-tuned Datalog implementations, whereas VPC is
automatically generated Datalog code from a network model and is not hand-
tuned. Figure 9 illustrates the speed-up achieved by the join optimizer for various
input data sets of DOOP, DDISASM and VPC. The join optimizer delivers a
performance speedup of up to 1.13× for DOOP. For DDISASM, we observe
improved performance with the join optimizer on 11 out of 17 fact sets of up
to 1.35× and a geometric mean speedup of 1.069× overall. For 6 out of 17 data
sets, performance degrades (in the worst case on GemsFDTD by 0.85×). The
slowdown is due to the join optimizer selecting new join orders that result in

Building a Join Optimizer for Soufflé 97

an
tl
r

bl
oa

t
ch
ar
t

ec
lip

se fo
p

hs
ql
db

jy
th
on

lu
in
de

x
lu
se
ar
ch

pm
d

xa
la
n

1

1.5

2

2.5
1.
13 1.
09

1.
13

1 1.
05

2.
38

1.
09

1.
05

1.
07

1.
09 1.
03

(a) DOOP
ca
ct
us
A
D
M

ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

sF
D
T
D

go
bm

k
gr
om

ac
s

h2
64

re
f

om
ne

tp
p

pe
rl
be

nc
h

p o
vr
ay

so
pl
ex

sp
hi
nx

3
to
nt
o

w
rf

xa
la
nc

bm
k

0.8

1

1.2

1.4

1.
19

1 .
01

1.
27

1 .
05
1.
21

0.
85

1.
33 1.

35
1.
11

0.
86

1.
11

1 .
16

1.
11

0.
93

0 .
96

0.
96

0 .
91

(b) DDISASM

N
-1
07

5-
se
c1

N
-1
07

5-
se
c2

N
-1
07

5-
se
c3

N
-2
34

0-
se
c1

N
-2
34

0-
se
c2

N
-2
34

0-
se
c3

N
-3
50

0-
se
c1

N
-3
50

0-
se
c2

N
-3
50

0-
se
c3

N
-3
51

1-
se
c1

N
-3
51

1-
se
c2

N
-3
51

1-
se
c3

N
-9
08

7-
se
c1

N
-9
08

7-
se
c2

N
-9
08

7-
se
c3

10

20

30

40

7.
16 8.
89 10
.2
2

38
.7
1

37
.6
9

36
.9
7

5.
49

5.
1

24
.3
2

5.
53

5.
08

24
.6

6.
74

6.
07

24
.9
8

(c) VPC

Fig. 9. Runtime Speed-up of the Join Orders Produced by the Join Optimizer.

extra indexes on relations, slowing down fact-sets that are write-heavy for certain
relations.

For VPC, the join optimizer provides better speedups because the join orders
for rules are not manually tuned. The speedup ranges from 5.08× up to 38.71×
with a geometric mean of 12.07×. These experiments show that the join opti-
mizer finds orders that, on average, perform well for DOOP and DDISASM even
in comparison with hand-tuned join orders and delivers outstanding performance
in the absence of hand-tuned joins such as VPC.

an
tl
r

b
lo
at

ch
ar

t
ec

li
p
se fo
p

h
sq

ld
b

jy
th

on
lu
in
d
ex

lu
se
ar

ch
p
m
d

xa
la
n

antlr
bloat
chart

eclipse
fop

hsqldb
jython
luindex
lusearch

pmd
xalan

DOOP DDISASM

≤ 1.5x
Optimal 88.43% 100.00%

≤ 1.1x
Optimal 68.60% 93.10%

ca
ct
u
sA

D
M

ca
lc
u
li
x

d
ea

lI
I

ga
m
es
s

G
em

sF
D
T
D

gc
c

go
b
m
k

gr
om

ac
s

h
26

4r
ef

om
n
et
p
p

p
er
lb
en

ch
p
ov

ra
y

so
p
le
x

sp
h
in
x3

to
nt

o
w
rf

xa
la
n
cb

m
k

cactusADM
calculix
dealIIgamess

GemsFDTDgcc
gobmk

gromacs
h264ref

omnetpp
perlbench

povray
soplex

sphinx3
tonto

wrf
xalancbmk

0 0.5 1 1.5 2

Fig. 10. A heat map representing the relative slowdown when optimizing on input A
and evaluating on input B compared to optimizing on B and evaluating on B.

98 S. Arch et al.

Training Data Robustness. For this experiment, we evaluate the robustness of
the join optimizer using different data sets as training sets. For this experiment,
we run DOOP with context-insensitive points-to analysis using the DaCapo
benchmark suite and DDISASM using SPECCPU 2006. The results are shown
in Fig. 10 as heat maps. A point in the heat map is a combination of a training
input (on the x-axis) and a test input (on the y-axis). We generate the join orders
for the training input using our join optimizer and use the same join orders for the
test input. To evaluate the robustness of the training, we compute the slowdown
for each combination. A ratio exceeding 1 is a performance slowdown indicating
that the training input fails to generalize join orders for the test input. For
DOOP, only 68.6% of the benchmarks have a slowdown ratio of 1.1× or lower,
with 14 benchmarks having a slowdown ratio of at least 1.5×. The test input
hsqldb is an outlier that generalizes poorly with a slowdown ratio of 3.68× to
6.10×. However, the join optimizer is quite robust for DDISASM’s training data,
with 93.1% of the runs having a slowdown ratio of less than 1.1×.

For both benchmarks, when a representative training input is selected (e.g.,
pmd for DOOP and GemsFDTD for DDISASM), the performance of the chosen
join orders can generalize across the benchmark, staying within 10% of the opti-
mal case. This shows that the join optimizer generalizes effectively when trained
on a representative input. In any case, our experiments show that new join orders
do not need to be re-derived for every new input, given the inputs have a similar
structure. We conjecture that in most domains, the structure e.g., relative join
sizes for different candidate join orders, would remain largely invariant.

Table 1. The overhead of the join optimizer at each stage

DOOP DDISASM VPC

min avg max min avg max min avg max

Profiling Stage Slowdown 1.62× 2.61× 4.66× 1.05× 1.18× 1.20× 1.00× 1.18× 1.60×
Join Ordering Stage Time 1m28s 1m33s 1m37s 51s 1m 1m57s < 1s

Profiling and Join Ordering Overheads. For our next experiment, we are inter-
ested in determining the overhead of our program-specialized profiling and the
overhead of running the join optimizer in the join ordering stage. From Table
1, the maximum overall slowdown is 4.66× for DOOP, the largest since there
is complex mutual recursion, executing for many iterations. By comparison, the
slowdown for DDISASM and VPC is 1.18× on average since they are mostly non-
recursive. Overall, the slowdowns for the profiling stage are acceptable, ranging
on average from 1.18× to 2.61×.

As shown from Table 1, the maximum time to run the join ordering stage
is 1m37s for DOOP, 1m57s for DDISASM and less than 1 second for VPC.
DOOP has a large overhead due to rules with larger bodies and rule iterations.
DDISASM takes the longest due to some rules with much larger rule bodies than

Building a Join Optimizer for Soufflé 99

in DOOP. Finally, since VPC has few iterations due to less mutual recursion, the
join ordering stage finishes in less than 1 second. Overall, the join ordering stage
of the join optimizer only takes a few minutes for complex industrial strength
applications and occurs at compile-time, not run-time, which is acceptable.

5 Related Work

Evaluating Datalog as a DSL. LogicBlox [5] employs worst-case optimal
joins, requiring users to manually rewrite and duplicate relations with differ-
ent attribute orders to achieve satisfactory performance. BDDBDDB [42] uses
binary decision diagrams to store relations, but high-performance relies on find-
ing variable orderings, which is an NP-Hard problem [32]. Socialite [38] requires
users to provide execution plans that enforce a join order. Other engines such
as μZ [23], Flix [31], and PADatalog [4] also require the user to manual tune
and provide performance hints that are no longer necessary when using Soufflé
with the join optimizer. The technique in [39] provides cost estimates statically
before execution.
Database Systems. Relational database management systems rely on cost-
based optimization with both bottom-up [6,36] or top-down [20] approaches
searching for a low-cost join order by estimating the actual execution cost of each
candidate. Since the latency for each request is the sum of the optimization time
and run-time, optimizers terminate after finding a sufficiently good join order. By
comparison, Soufflé exhaustively runs its join optimizer at compile-time resulting
in cost-optimal join orders, including for recursive rules. Additionally, Soufflé
knows the rules apriori, allowing the join optimizer to collect only the necessary
statistics, leading to a lightweight join optimization process that consistently
produces high-quality join orders.
Auto-Scheduling for DSLs. There have been several compiling DSLs such
as Halide [34], GraphIt [43], and TACO [28]. These DSLs separate the algo-
rithm (what to compute) from the schedule (how to compute it). For instance,
Halide allows users to provide schedules that control the degree of paralleliza-
tion, vectorization, loop tiling and loop fusion. Auto-schedulers for these DSLs
use sophisticated techniques [2,3] such as generating hundreds of thousands of
random programs and schedules and training a machine-learned cost model for
unseen schedules. Soufflé exposes only join-orders for optimization that are less
sensitive to architectural details, allowing for simple cost models that rely on
relational selectivities alone to achieve high-performance.

6 Conclusion

This paper presents an FDO strategy for join ordering targeting Datalog compil-
ers. We have demonstrated that our optimizer is competitive with hand-tuned
join orders while outperforming un-tuned orders by 12.07× on average. Our
optimizer is lightweight, incurring an average slowdown of 2.61× for the slow-
est application during statistics collection. The join orders are also robust when

100 S. Arch et al.

given a well-chosen, representative input. Overall, our join optimizer can save
significant human effort spent manually tuning and enables users to achieve
high-performance automatically without breaking declarativeness.

Acknowledgements. This work was generously supported by Fantom Foundation
and by the Australian Government through the ARC Discovery Project funding scheme
(DP210101984).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-
Wesley Reading (1995)

2. Adams, A., et al.: Learning to optimize halide with tree search and random pro-
grams. ACM Trans. Graph. 38(4), 1–12 (2019)

3. Anderson, L., Adams, A., Ma, K., Li, T.M., Jin, T., Ragan-Kelley, J.: Efficient
automatic scheduling of imaging and vision pipelines for the GPU. In: Proceedings
of the ACM on Programming Languages 5(OOPSLA), pp. 1–28 (2021)

4. Antoniadis, T., Triantafyllou, K., Smaragdakis, Y.: Porting doop to soufflé: a tale
of inter-engine portability for datalog-based analyses. In: Proceedings of the 6th
ACM SIGPLAN International Workshop on State Of the Art in Program Analysis,
pp. 25–30 (2017)

5. Aref, M., et al.: Design and implementation of the logicblox system. In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, pp.
1371–1382 (2015)

6. Astrahan, M.M., et al.: System R: relational approach to database management.
ACM Trans. Graph. 1(2), 97–137 (1976)

7. Backes, J., et al.: Reachability analysis for AWS-based networks. In: Dillig, Isil,
Tasiran, Serdar (eds.) CAV 2019. LNCS, vol. 11562, pp. 231–241. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 14

8. Bancilhon, F.: Naive evaluation of recursively defined relations. In: Brodie, M.L.,
Mylopoulos, J. (eds) On Knowledge Base Management Systems. Topics in Infor-
mation Systems. Springer, NY (1986). https://doi.org/10.1007/978-1-4612-4980-
1 17

9. Beeri, C., Ramakrishnan, R.: On the power of magic. In: Proceedings of the Sixth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pp. 269–284 (1987)

10. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pp. 169–190
(2006)

11. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: Proceedings of the 24th ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and Applications, pp. 243–262
(2009)

12. Bruno, N.: Automated Physical Database Design and Tuning, 1st edn. CRC Press
Inc., Boca Raton (2011)

13. Ceri, S., Gottlob, G., Tanca, L., et al.: What you always wanted to know about
datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166
(1989)

https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1007/978-1-4612-4980-1_17
https://doi.org/10.1007/978-1-4612-4980-1_17

Building a Join Optimizer for Soufflé 101

14. Codd, E.. F..: A relational model of data for large shared data banks. In: Broy,
Manfred, Denert, Ernst (eds.) Software Pioneers, pp. 263–294. Springer, Heidelberg
(2002). https://doi.org/10.1007/978-3-642-59412-0 16

15. Developers, S.: Soufflé documentation (2016). https://souffle-lang.github.io/pdf/
abdulthesis.pdf

16. Developers, S.: Soufflé documentation (2016). https://souffle-lang.github.io/
handtuning#profiler

17. Developers, S.: Soufflé release 2.3 (2022). https://github.com/souffle-lang/souffle/
releases/tag/2.3

18. Flores-Montoya, A., Schulte, E.: Datalog disassembly. In: 29th USENIX Security
Symposium (USENIX Security 2020), pp. 1075–1092 (2020)

19. Garcia-Molina, H., Widom, J., Ullman, J.D.: Database System Implementation.
Prentice-Hall Inc., USA (1999)

20. Graefe, G.: The cascades framework for query optimization. IEEE Data Eng. Bull.
18(3), 19–29 (1995)

21. Grech, N., Brent, L., Scholz, B., Smaragdakis, Y.: Gigahorse: thorough, declar-
ative decompilation of smart contracts. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 1176–1186. IEEE (2019)

22. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

23. Hoder, Kryštof, Bjørner, Nikolaj, de Moura, Leonardo: μZ– an efficient engine for
fixed points with constraints. In: Gopalakrishnan, Ganesh, Qadeer, Shaz (eds.)
CAV 2011. LNCS, vol. 6806, pp. 457–462. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 36

24. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)
25. Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv.

16(2), 111–152 (1984)
26. Jordan, Herbert, Scholz, Bernhard, Subotić, Pavle: Soufflé: on synthesis of pro-

gram analyzers. In: Chaudhuri, Swarat, Farzan, Azadeh (eds.) CAV 2016. LNCS,
vol. 9780, pp. 422–430. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 23

27. Jordan, H., Subotić, P., Zhao, D., Scholz, B.: A specialized b-tree for concurrent
datalog evaluation. In: Proceedings of the 24th Symposium on Principles and Prac-
tice of Parallel Programming, pp. 327–339 (2019)

28. Kjolstad, F., Kamil, S., Chou, S., Lugato, D., Amarasinghe, S.: The tensor algebra
compiler. In: Proceedings of the ACM on Programming Languages 1(OOPSLA),
pp. 1–29 (2017)

29. Lagouvardos, S., Dolby, J., Grech, N., Antoniadis, A., Smaragdakis, Y.: Static
analysis of shape in TensorFlow programs. In: Hirschfeld, R., Pape, T. (eds.) 34th
European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 166, pp. 15:1–15:29. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020)

30. Leis, V., et al.: Query optimization through the looking glass, and what we found
running the Join Order Benchmark. VLDB J. 27(5), 643–668 (2017). https://doi.
org/10.1007/s00778-017-0480-7

31. Madsen, M., Yee, M.H., Lhoták, O.: From datalog to flix: a declarative language
for fixed points on lattices. SIGPLAN Not. 51(6), 194–208 (2016)

32. Meinel, C., Slobodová, A.: On the complexity of constructing optimal ordered
binary decision diagrams. In: Pŕıvara, I., Rovan, B., Ruzička, P. (eds.) MFCS
1994. LNCS, vol. 841, pp. 515–524. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-58338-6 98

https://doi.org/10.1007/978-3-642-59412-0_16
https://souffle-lang.github.io/pdf/abdulthesis.pdf
https://souffle-lang.github.io/pdf/abdulthesis.pdf
https://souffle-lang.github.io/handtuning#profiler
https://souffle-lang.github.io/handtuning#profiler
https://github.com/souffle-lang/souffle/releases/tag/2.3
https://github.com/souffle-lang/souffle/releases/tag/2.3
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1007/3-540-58338-6_98
https://doi.org/10.1007/3-540-58338-6_98

102 S. Arch et al.

33. Neumann, T., Radke, B.: Adaptive optimization of very large join queries. In:
Proceedings of the 2018 International Conference on Management of Data, pp.
677–692 (2018)

34. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. ACM SIGPLAN Not. 48(6), 519–530 (2013)

35. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale program
analysis in datalog. In: Proceedings of the 25th International Conference on Com-
piler Construction, pp. 196–206 (2016)

36. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Readings in Arti-
ficial Intelligence and Databases, pp. 511–522. Elsevier (1989)

37. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1), 23–52
(1988)

38. Seo, J., Guo, S., Lam, M.S.: Socialite: datalog extensions for efficient social net-
work analysis. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 278–289. IEEE (2013)

39. Sereni, D., Avgustinov, P., de Moor, O.: Adding magic to an optimising datalog
compiler. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, pp. 553–566. SIGMOD 2008, Association for Computing
Machinery, NY (2008). https://doi.org/10.1145/1376616.1376673

40. Smith, M.D.: Overcoming the challenges to feedback-directed optimization
(keynote talk). SIGPLAN Not. 35(7), 1–11 (2000)

41. Subotić, P., Jordan, H., Chang, L., Fekete, A., Scholz, B.: Automatic index selection
for large-scale datalog computation. Proc. VLDB Endow. 12(2), 141–153 (2018)

42. Whaley, John, Avots, Dzintars, Carbin, Michael, Lam, Monica S..: Using data-
log with binary decision diagrams for program analysis. In: Yi, Kwangkeun (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 97–118. Springer, Heidelberg (2005). https://
doi.org/10.1007/11575467 8

43. Zhang, Y., Yang, M., Baghdadi, R., Kamil, S., Shun, J., Amarasinghe, S.: GraphIt:
a high-performance graph DSL. In: Proceedings of the ACM on Programming
Languages 2(OOPSLA), pp. 1–30 (2018)

44. Zhao, D., Subotic, P., Raghothaman, M., Scholz, B.: Towards elastic incremental-
ization for datalog. In: Veltri, N., Benton, N., Ghilezan, S. (eds.) PPDP 2021: 23rd
International Symposium on Principles and Practice of Declarative Programming,
Tallinn, Estonia, 6–8 September 2021, pp. 20:1–20:16. ACM (2021)

https://doi.org/10.1145/1376616.1376673
https://doi.org/10.1007/11575467_8
https://doi.org/10.1007/11575467_8

	Building a Join Optimizer for Soufflé
	1 Introduction
	2 Background and Motivating Example
	3 A Join Optimizer for Soufflé
	3.1 The Profiling Stage
	3.2 The Join Ordering Stage

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

