
Fast Equivalence Relations in Datalog

PATRICK NAPPA

SID: 440243449

Supervisor: A. Prof. Bernhard Scholz

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Computer Science (Adv.) (Honours)

School of Information Technologies
The University of Sydney

Australia

5 November 2018

Student Plagiarism: Compliance Statement

I certify that:

I have read and understood the University of Sydney Student Plagiarism: Coursework Policy and

Procedure;

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Procedure

can lead to the University commencing proceedings against me for potential student misconduct under

Chapter 8 of the University of Sydney By-Law 1999 (as amended);

This Work is substantially my own, and to the extent that any part of this Work is not my own I have

indicated that it is not my own by Acknowledging the Source of that part or those parts of the Work.

Name: Patrick Nappa

Signature: Date: 26/06/2018

ii

Abstract

Declarative programs have encountered a resurgence in popularity for their ease of expression for

problems that involve large data sets; including static program analysis, security verification, network rout-

ing, and more. Of interest to efficiency, are specialised data-structures designed to increase performance

within these declarative program evaluation frameworks.

In this thesis we provide and demonstrate an efficient method for representing equivalence relations

within Datalog engines, providing at best a quadratic speed-up and space improvements. We do so via the

use of modified parallel union-find data-structures and extending the semi-naïve evaluation approach to

support these equivalence relations within the solving framework. To our understanding, this is the first

time that a self-computing data-structure is deployed in a Datalog engine, i.e., a set of rules is executed

implicitly by the data-structure.

We demonstrate the efficacy of this approach by implementing this in the SOUFFLÉ Datalog engine,

and comparing to the explicit representation of such programs in Datalog on real-world data-sets. We show

that our data-structure is able to store over a trillion tuples for a static program analysis scenario - deriving

the final result in under 4 seconds, where we believe an explicit representation of these equivalence

relations would take several years to compute.

iii

Acknowledgements

I’d like to thank my supervisor, Bernhard, for all the support, knowledge, dashing good looks,

patience, and wisdom afforded to this project. How he has coped with me over these years is beyond me.

I extend my thanks to the PLANG research group; Abdul, David, John, Lexi, Lyndon, Martin (as well

as the transient few) - for their meritorious company, presentations, and sanity checks afforded to me,

especially that of the past few months.

However, I’d like to reserve my greatest regards to the structural integrity of this building, and for the

support it has given to me thus far.

iv

CONTENTS

Student Plagiarism: Compliance Statement ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables xi

Chapter 1 Introduction 1

1.0.1 Contribution . 4

1.0.2 Outline . 4

Chapter 2 Background 6

2.1 Datalog . 6

2.1.1 Evaluation . 8

2.2 Semi-naïve Evaluation . 10

2.2.1 Rule Transformation . 11

2.3 Equivalence Relations in Datalog . 12

2.4 SOUFFLÉ Syntax . 14

Chapter 3 Equivalence Relations in Datalog Engine 16

3.1 Equivalence Relation Layer . 18

3.1.1 ADT . 21

3.1.2 Iteration . 22

3.1.3 Cache Generation & Implementation . 24

3.1.4 Partitioning . 27

3.1.5 Benchmarks . 29

3.2 Densifier . 35

3.2.1 ADT . 36

v

CONTENTS vi

3.2.2 C++ Implementation . 41

3.2.3 Benchmarks . 41

3.3 Disjoint Set . 48

3.3.1 ADT . 49

3.3.2 Implementation . 57

3.3.3 PiggyList . 62

3.3.4 Disjoint Set and PiggyList Benchmarks . 72

Chapter 4 Experiments 85

4.1 Bitcoin User Groups . 85

4.1.1 Input Dataset . 88

4.1.2 Datalog Programs . 88

4.1.3 Results . 90

4.1.4 Discussion . 97

4.2 Steensgaard Analysis . 97

4.2.1 Field-Sensitive Analysis . 98

4.2.2 Datalog Programs . 100

4.2.3 Results . 102

4.2.4 Discussion . 105

Chapter 5 Future Work 107

5.1 Equivalence Relation . 107

5.2 Sparse Mapping . 108

5.3 PiggyList . 109

Conclusion 110

Bibliography 111

List of Figures

1.1 Trie representation of a ternary relation in LogicBlox (Aref et al., 2015) 2

2.1 Datalog program computing the transitive closure of paths 7

2.2 Precedence graph of Datalog rules 7

2.3 Precedence graph for the rules within the Datalog program in Snippet 2.1 12

2.4 Equivalence relations may be defined via adding three rules in Datalog 12

2.5 Explicit facts are denoted in black (EDB), derived facts are in red 14

3.1 Architecture 17

3.2 Pairs of the equivalence relation 18

3.3 Disjoint sets of sparse elements 18

3.4 Disjoint sets of elements, tightly encoded 18

3.5 Resulting delta relation after the extension 19

3.6 Equivalence Cache that corresponds to the equivalence classes pictured in Figure 3.7 22

3.7 Example equivalence class partitioning 22

3.8 Total running time for a large equivalence class 31

3.9 Total resident memory for a large equivalence class 32

3.10 Total running time for small equivalence classes 33

3.11 Total resident memory for small equivalence classes 34

3.12 Simulation of densification of the sparse values {a, b, c, d} 37

3.13 Resulting state in the hash map 37

3.14 Resulting state in the dynamic array for the provided sequential operations. 37

3.15 Same key densification, single thread 43

3.16 Same key densification, two threads 43

vii

LIST OF FIGURES viii

3.17 Same key densification, four threads 43

3.18 Same key densification, eight threads 43

3.19 Unique key densification, single thread 44

3.20 Unique key densification, two threads 44

3.21 Unique key densification, four threads 45

3.22 Unique key densification, eight threads 45

3.23 Random key densification, single thread 46

3.24 Random key densification, two threads 46

3.25 Random key densification, four threads 46

3.26 Random key densification, eight threads 46

3.27 High contention key densification, single thread 47

3.28 High contention key densification, two threads 47

3.29 High contention key densification, four threads 48

3.30 High contention key densification, eight threads 48

3.31 Pre-union 50

3.32 After union(w,x) 50

3.33 After union(w, y) 50

3.34 Pre-union 51

3.35 After union(b,a) 51

3.36 After union(c, b) 51

3.37 After union(d, c) 51

3.38 Pre-union 51

3.39 After union(b,a) 51

3.40 After union(c, b) 51

3.41 After union(d, c) 51

3.42 Pre-union 52

3.43 After union(a,b) 52

3.44 After union(b,d) 52

LIST OF FIGURES ix

3.45 After union(e,c) 52

3.46 After union(f,g) 52

3.47 After union(e,f) 52

3.48 After find(g) 53

3.49 After union(d,e) 53

3.50 After find(b) 53

3.51 packed value of an element resident in index 1 58

3.52 Array representation of packed values 58

3.53 Equivalent disjoint-set forest 58

3.54 Store performance of various-sized atomic datatypes 60

3.55 Basic chunked-linked-list that has an access bottleneck 63

3.56 PiggyList with initial block size of 1; four elements have been created 64

3.57 Starting PiggyList - occupied elements are labelled in green, unused in white 66

3.58 PiggyList after index 3 has been deleted. Red is used to mark deleted elements 66

3.59 PiggyList after index 0 has been deleted 66

3.60 PiggyList after index 4 has been deleted 66

3.61 Starting PiggyList - the final used index is 6 67

3.62 The element at index 6 is moved to index 4, final advances to the last element (4) 67

3.63 The element at index 4 is moved to index 1, final advances to index 3 68

3.64 Index 5 is after the final index, so no elements are moved. We terminate as there is no more

elements in the deletion queue 68

3.65 Memory consumption for a multithreaded insertion benchmark. The number of threads in this

test is 16. 69

3.66 Probability graph of the linear dice roll function, the last t threads are guaranteed to succeed 71

3.67 Space consumption of a uniform probability Wait-free PiggyList 72

3.68 Runtime for read heavy concurrent operations 74

3.69 Runtime for equal read/write heavy concurrent operations 75

3.70 Runtime for write heavy concurrent operations 76

LIST OF FIGURES x

3.71 Mean Producer/Consumer runtime for read heavy concurrent operations 77

3.72 Mean Producer/Consumer runtime for equal read/write heavy concurrent operations 78

3.73 Mean Producer/Consumer runtime for write heavy concurrent operations 79

3.74 1 Thread Insertion 80

3.75 2 Threaded Parallel Insertion 80

3.76 4 Threaded Parallel Insertion 80

3.77 8 Threaded Parallel Thread Insertion 80

3.78 Memory consumption of a std::vector as elements are inserted 81

3.79 Memory consumption of a Locking PiggyList as elements are inserted 82

3.80 8 bit (uint8_t) append performance 83

3.81 16 bit (uint16_t) append performance 83

3.82 32 bit (uint32_t) append performance 83

3.83 64 bit (uint64_t) append performance 83

4.1 The blockchain structure (Modified from (Nakamoto, 2008)) 86

4.2 A simplified Bitcoin transaction 86

4.3 Signing a transaction with a private key (Modified from (GÃűthberg, 2006)) 87

4.4 Memory and time consumption of the input symbol table 91

4.5 Solving time for the same_user* predicate for the Bitcoin data set 92

4.6 Solving time of the implicit program vs. input tuples 93

4.7 Solving time of the explicit program vs. output tuples 94

4.8 Iteration time versus the number of output tuples 95

4.9 Memory use for both representations versus the number of input tuples 96

4.10 Resulting points-to set - field sensitive analysis 99

4.11 Solving time for various thread counts for each analysis 103

4.12 Maximum resident memory size for each analysis 105

List of Tables

4.1 Statistics of the input data set 88

4.2 Solving Time (seconds, 2 s.f.), * indicates the experiments were only ran once 92

4.3 Memory Consumption of the Bitcoin Benchmarking Programs (MB, 2 s.f.) 96

4.4 Constraint rules for the simplified field-sensitive language grammar 99

4.5 Solving time for the points-to analyses (seconds, 2 s.f.) 103

4.6 Time breakdown of the points-to analysis 104

xi

CHAPTER 1

Introduction

In recent years Datalog has emerged as domain-specific logic programming language for a wide range

of applications including static program analysis (Bravenboer and Smaragdakis, 2009), program secu-

rity (Marczak et al., 2010), program optimisations (Liu et al., 2012), cloud computing (Alvaro et al.,

2010), and networking (Loo et al., 2005). Accompanying this resurgence is a wide array of specialised

frameworks on Datalog systems that provide specialisations for various problem domains. These prob-

lems may be solved through several Datalog-based evaluation engines: LogicBlox, (Aref et al., 2015)

SOUFFLÉ , (Scholz et al., 2016) Z3, (De Moura and Bjørner, 2008) and bddbddb, (Whaley and Lam,

2004) - to name a few.

As a declarative programming language, Datalog programs are solely represented by what tasks they per-

form, rather than the low level details of how, resulting in reduced complexities in program development

and less upkeep. However, as with high-level interfaces, the programs must be sufficiently optimised

so that they are competitive with imperative implementations. These modern evaluation engines have

approached this in various ways.

Programs may be optimised at the source level, with program rewriting transformations such as Magic

Set (Ullman, 1989) that prune unnecessary computation in a Datalog program. In addition, Datalog

programs may be parallelised in that queries can be sped up via distributing work across a set of threads

or CPUs (Scholz et al., 2016; Lam et al., 2013). However, substantial performance gains can be achieved

by specialising the underlying data-structures for storing logical relations in a Datalog engine.

There has been previous successes in representing analyses using specialised data-structures in Datalog

engines. These typically take the form of a specialising Datalog engines for a given purpose. Binary

Decision Diagrams (BDDs) had been used by Whaley et al. in the bddbddb Datalog engine (Whaley,

2004) to produce the first scalable, context-sensitive, inclusion-based, (Andersen, 1994) pointer analysis

for Java programs (Whaley and Lam, 2004). Typically, these context-sensitive analyses often include call

1

1 INTRODUCTION 2

graphs with 1014 paths or more, (Whaley and Lam, 2004) and storing these explicitly would be intractable

even for smaller programs upon which are being analysed. BDDs are an efficient representation of very

large logic relations - potentially exponential in size, as is the case in context-sensitive analyses - and

enables efficient set operations between these relations. BDDs are an efficient data-structure to compress

relations in form of truth-tables. The authors noted that the performance of such generated BDD programs

were faster than the manually optimised counterparts. These BDDs are not necessarily all-encompassing -

the bddbddb tool relies on a good variable order which cannot be found in polynomial time.

LogicBlox (Aref et al., 2015) is a generalised declarative language system based on Datalog aimed at

developing enterprise software, which uses high-performance, trie data-structures to support relations

efficiently. The primary motivation for the use of tries is for computing joins between relations via their

custom Leapfrog Triejoin algorithm. This data-structure is general, in that it is not designed specifically

for a certain problem but instead provides fast performance for all interactions with the LogicBlox system.

Figure 1.1 demonstrates the space efficiency of storing tuples with many shared prefixes. This may not

be the case generally that most relations stored share the same few elements at the front of the tuple.

Performing a join in these cases is simple - iterating through all tuples with a prefix involves traversing

over the direct children. However, for cases which joins must be performed on the last element in a tuple,

this data-structure is less performant.

FIGURE 1.1: Trie representation of a ternary relation in LogicBlox (Aref et al., 2015)

LogicBlox is a popular framework for performing large-scale program analysis, performing analyses on

specifications that are not feasible for bddbddb (Bravenboer and Smaragdakis, 2009). One shortcoming

is that LogicBlox has for a single logical relation a single trie. Manual optimisations are required to

1 INTRODUCTION 3

replicate logical relations to achieve high-performance. In addition, LogicBlox evaluates these programs

in a single-threaded manner, not exploiting the ever increasing parallelism workloads of modern CPUs. It

is a proprietary system and hence not open-source.

The µZ engine is a Datalog engine in the Z3 toolbox (Hoder et al., 2011) that has been developed by

Microsoft Research. The µZ datalog engine uses a hashmap to store logical relations (Scholz et al., 2016).

Hashmaps adapt poorly to large-scale problems since their randomized memory access destroy cache

locality. However, µZ compensates the lack of fine-tuned data-structure by sophisticated source-code

level optimisations.

The design and implementation of SOUFFLÉ started at Oracle Labs in Brisbane. It was initially developed

to detect security flaws in OpenJDK. Since it was made open-source in early 2016, SOUFFLÉ has been

deployed in various applications including the analysis of networks at Amazon, and Ethereum smart

contracts. SOUFFLÉ applies code specialization ideas to generate efficient code from Datalog programs. It

builds a hierarchy of Futamura projections (Futamura, 1999) to translate Datalog program to an efficient

parallel C++ program. The data-structures for the logical relations in a program are specialized depending

on the operations that are performed. This approach diverges from prior-art: other Datalog engines use

a single data-structure for representing logical relations. As a result, SOUFFLÉ exhibits performance

characteristics that are on-par with hand-crafted state-of-the-art tools.

There is a large class of relations in Datalog programs that is a very specific case called equivalence

relations. These are binary relations that are reflexive, symmetric, and transitive. Equivalence relations

occur in various applications including points-to, network analysis, and smart-contracts to group objects.

Current Datalog engines do not use any specialised data-structures to represent equivalence relations

efficiently. A union-find data-structure (Kleinberg and Tardos, 2005) would be an appropriate choice

to represent logical equivalence relations. Instead of executing horn clauses representing properties of

equivalence relations: (1) reflexivity, (2) symmetry, and (3) transitivity; the underlying data-structure

executes these clauses implicitly. Hence, no rules need to be executed for properties (1)-(3) and the best

case compression reduction using union-find is square-root of the domain size. To achieve the integration

of a union-find data-structure in a Datalog engine, several problems arise:

(1) The semi-naïve evaluation strategy for computing the result of Datalog programs is not designed

to cope with self-computing sets. The semi-naive evaluation strategy has to be extended so that

we self-computing data-structures such as union-find can be used.

1 INTRODUCTION 4

(2) The union-find data-structure has the problem that it assumes a dense domain. This is an

obstacle for practical use because the domain of an equivalence relation are arbitrary num-

bers. A densification of the domain is required to deploy efficient union-find data-structure

implementations.

(3) Another challenge is the parallelisation of the union-find data-structure and any auxiliary data-

structures for storing logical equivalence relations. This is an essential need to harvest the

computational power of modern machines.

(4) The union-find data-structure needs to simulate the operations of a binary relations. The

implementation of a generic relation interface is required to implement these operations.

The above requirements are very challenging in terms of data-structure/algorithmic design. To show that

this is possible, we have implemented specialised equivalence relations in SOUFFLÉ . The objective was to

show that specialised data-structures for specific purposes are possible and bring substantial performance

to real-world applications.

1.0.1 Contribution

The contributions of this work are as follows:

(1) We extend the semi-naïve evaluation strategy in Datalog to accommodate for self-computing

data-structures such as union-find that perform rules implicitly.

(2) We introduce a multi-layered data-structure designed to efficiently represent equivalence rela-

tions within Datalog engines.

(3) We develop various parallel multi-threaded data-structures designed for equivalence relations.

(4) We perform extensive experiments to show the efficacy of our approach.

1.0.2 Outline

To begin, we explore relevant material to the topic of this thesis. In Chapter 2 we introduce and

formalise Datalog, investigating the evaluation strategies within both top-down and bottom Datalog

evaluation strategies and the optimisations that may be made - also covering the SOUFFLÉ environment

and equivalence relations.

1 INTRODUCTION 5

In Chapter 3, we investigate the layered data-structure, exploring the ADT interfaces, implementation

details, as well performing micro-benchmarks for each layer. Our three layers focus on iteration over

implicit pairs, transformation of a sparse domain onto a ordinal domain, and the partitioning of equivalence

classes through the union-find data-structure.

In Chapter 4 we apply real-world benchmarks to our data-structure and compare them to other approaches,

mentioning future work in Chapter 5, and concluding in Chapter 6.

CHAPTER 2

Background

2.1 Datalog

Datalog uses a fragment of first-order predicate logic(Abiteboul et al., 1995; Green et al., 2013b; Greco

and Molinaro, 2015). It restricts the model to a finite universe and rules must be phrased as Horn Clauses,

i.e., disjunctions of negated atoms with at most one positive atom. As a declarative query language,

Datalog provides a method to describe a program with regards to goals, rules, and facts. The Datalog

language lets a programmer ignore implementation details, and to focus instead on specifying what, not

how, a program evaluates.

2.1.0.1 Structure

In Datalog we differentiate between two types of logic relations. The first type of relations is called an

Extensional Database (EDB) which resembles the input of a Datalog program, i.e., the relations consists

of known facts only and have no rules. The second type of relations is called an Intensional Database

(IDB). Relations in the IDB are computed relations, i.e., their result is derived from a set of rules. The

syntax of a Datalog rule is given below:

R0 ← R1, R2, . . . , Rn.

Each Rj corresponds to a relation, which takes the form r(x0, x1, . . . , xn) for a relation with an arity

of n. Each xi is either a constant or a variable - note that the set of constants are from a finite universe.

We refer to the left-hand side of the rule as the head of the rule and we refer to the right-hand side of

the rule as the body. The body of the rule is a series of conjunctions of atoms, or simple predicates of

existence that imply the head. A rule can be interpreted as a conditional, i.e., if the body R1, . . . , Rn of a

rule holds, then then head of the rule must hold.

6

2.1 DATALOG 7

Rules without bodies are called facts, meaning that the head is unconditionally true - these are said to be

within the EDB. These are either denoted as ‘R0 ← .’, or for brevity ‘R0.’. The atoms Ri are of the form

r0(X1, X2, . . . , Xn), this captures variables X1, . . . , Xn that may be shared across atoms. The following

Datalog rule r(X) (for a variable X in the finite universe U) is true if s(X) ∧ t(X).

r(X)← s(X), t(X).

So, if s(“string”) and t(“string”) holds, r(“string”) will consequently be true. The atom s(x) may

be true for some variable x ∈ U either through the existence of a fact s(x). within the EDB, or a rule

that describes s(x) as true as part of the IDB. We may define a goal as a rule that has no head, i.e.

← R1, . . . , Rn.. In essence, these are queries, and Datalog programs attempt to evaluate the ‘truthiness’

of goals.

2.1.0.2 Example Program

The following Datalog program describes a transitive closure over a set of edges (directed as the order

of the arguments to each predicate matter) edge(x, y). The rule path(x, y) will generate all reachable y

from x through following the set of specified edges. The following program denotes that a path between

X and Y exists if there either if there is a direct edge between X and Y , or there is a path from X to Z if

there is an edge between X and some other variable Y , and there is a path from Y to Z.

1 edge(a,b).
2 edge(a,e).
3 edge(b,c).
4 edge(c,d).
5

6 path(X,Y) ← edge(X,Y).
7 path(X,Z) ← edge(X,Y), path(Y,Z).

FIGURE 2.1: Datalog program
computing the transitive closure of
paths

edge

path

FIGURE 2.2: Precedence graph of
Datalog rules

Datalog may contain recursive rules, which allow the above transitive closure over the set of edges to be

calculated (and concisely expressed within just two rules). Relational databases alone cannot express

2.1 DATALOG 8

such a rule purely within the relational algebra and calculus upon which they are described. (Aho and

Ullman, 1979) Figure 2.2 shows the precedence graph of the above program in Figure 2.1.

Negation in logic is problematic because it can introduce the classical paradox negating itself. For

example, the rule A(x)← ¬A(x). would define the contents of the relation as a negation of itself. This

is logically not sound and cannot be computed. To get a handle on the problem, the research community

introduced the notion of stratified negation, i.e., a Datalog program is decomposed in individual strata

and ordered according to a fixed order. Negation can only be used if the negated relation is computed in a

prior stratum. Stratified negation is the standard method of dealing with negation in Datalog (Abiteboul

et al., 1995).

2.1.1 Evaluation

There are two fundamental evaluation strategies for Datalog, i.e., top-down and bottom-up evaluation.

In top-down evaluation, the goal is expanded by rules/facts until the goal is proven, otherwise known

as resolution. Top-down methods have been extended for Datalog to make them deterministic and

efficient. (Saptawijaya and Pereira, 2013) However, the expansion of the goal relies on symbolic rewriting

of rules via resolution. Top-down evaluation works by being provided a relation that must be proven, and

evaluating the rules that must hold in order for the head of said relation to hold. For the above example

in Snippet 2.1, evaluating the query ?- path(a,c) must be done firstly through an invocation of

the second path rule (Line 7) (the first rule (Line 6) does not hold as there is no direct edge(a,c)

statement). There exists a single variable assignment that holds for the first atom in the body, namely

edge(a,b). All that is left to prove consequently is path(b,c), which trivially holds from the first

rule, as it exists in the EDB for edge. No irrelevant atoms were be evaluated in order to test the query.

Negation, that is requiring a tuple does not exist, will require all knowledge for that rule to be computed

to ensure monotonicity of new knowledge. If large number of tuples are either generated in the IDB

and/or stored in the EDB, the top-down approach computationally collapses and becomes intractable for

large-scale problems (Green et al., 2013a).

To overcome the limitations of top-down evaluation strategies, modern Datalog engines (Aref et al.,

2015; De Moura and Bjørner, 2008; Whaley, 2004) use bottom-up evaluation strategies in conjunction

with magic-set techniques (Abiteboul et al., 1995; Ullman, 1989). The bottom-up evaluation strategy

exploits the connection to lattice theory and logic. Logical computations can be expressed over a sub-set

lattice and a consequence operator, which is a monotonic function. The fixed-point of the immediate

2.1 DATALOG 9

consequence operator coincides with the result of the Datalog program; Knaster–Tarski’s (Tarski, 1955)

theorem is fundamental to make this connection work.

The immediate consequence operator TPD
, for a program PD is defined as follows:(Greco and Molinaro,

2015)

TPD
(I) = {A0|A0 ← A1, . . . , Anis a ground rule in ground(PD) and Ai ∈ I for every 1 ≤ i ≤ n}

This is the set of ground atoms that are generated as an immediate consequence of I w.r.t. PD, iterating

this until a fixed-point will result in the set of all computable tuples. Bottom-up evaluation involves

evaluating all captured rules in order to reach the target rule. We are able to perform some optimisations,

for example we don’t consider rules that do not reach the goal vertex in the precedence graph. The

following example demonstrates an approach of bottom-up evaluation wherein new knowledge is learned

for each iteration, although also that this approach is inefficient as tuples that already exist are re-evaluated

per step. We use the same example program shown in Figure 2.1, with path1 referring to the first rule for

path, and path2 referring to the second.

2.1.1.1 Naïve Evaluation

Using the immediate consequence operator T , we demonstrate a naïve method of solving Datalog

bottom-up. Initially, I0 contains all the ground atoms that comprise the EDB of PD as they are the

immediate consequence of no deduced knowledge, and thus can be used in the first iteration to generate

new knowledge. All previous knowledge is used to deduce further knowledge. We use the ./ operator

to denote a join across relations - i.e. this will match relations with matching terms in their arguments,

edge(a,b), path(a,c) match on the first argument, for example.

I0 = TPD
(∅) = {edge(a, b), edge(a, e), edge(b, c), edge(c, d)}

I1 = TPD
(I0) = I0 ./ path1 ∪ I0 ./ path2 = I0 ∪ {path(a, b), path(a, e), path(b, c), path(c, d)}

I2 = TPD
(I1) = I1 ./ path1 ∪ I1 ./ path2 = I1 ∪ {path(a, c), path(b, d)}

I3 = TPD
(I2) = I2 ./ path1 ∪ I2 ./ path2 = I2 ∪ {path(a, d)}

I4 = TPD
(I3) = I3 ./ path1 ∪ I3 ./ path2 = I3

2.2 SEMI-NAÏVE EVALUATION 10

As I3 = I4, we have reached a fixed point, and thus there is no new knowledge to be gained. Redundant

computation is performed at each application, where all previous knowledge will be regenerated based

on the current knowledge each iteration.

Bottom-up strategies have the disadvantage that the totality of all IDB tuples are to be computed. To

reduce the amount of data in the IDB, the magic-set transformation (Bancilhon et al., 1985; Abiteboul

et al., 1995) was introduced. The transformation rewrites the Datalog program according to its goal

so that unnecessary tuples in the IDB will not be computed. We explore a more efficient method of

bottom-up evaluation, semi-naïve evaluation, in the next section.

2.2 Semi-naïve Evaluation

Naive evaluation (as demonstrated with the consequence operator) does not consider the dependencies of

the recursive relations in a Datalog program, hence, the evaluation is performed globally over all rules in

the program. With a large number of relations which may be only partially mutual recursive to each other,

the naive evaluation strategy becomes expensive. Hence, the evaluation is broken up into an evaluation

over different strata, i.e., each strata is computed in an own fixed-point, and the order of the strata is given

by the precedence graph. The other extension of the semi-naive evaluation strategy is that new tuples

in the previous iteration of the fixed-point calculations are memoized. With that “new knowledge” less

computations can be performed for gaining the new knowledge of the current iteration.

Semi-Naive evaluation was very successful in various state-of-the-art Datalog engines including Log-

icBlox (Aref et al., 2015), µZ/Z3 (Hoder et al., 2011; De Moura and Bjørner, 2008), bddbddb (Whaley,

2004), and SOUFFLÉ (Jordan et al., 2016). SOUFFLÉ is a high performance Datalog interpreter & com-

piler, converting a superset of the Datalog language to high performance, parallel C++ code. In order

to compute rules, SOUFFLÉ performs bottom-up evaluation. Rather than computing all the relations

naïvely, SOUFFLÉ uses this semi-naïve evaluation, which when sufficient program optimisations are made

to a Datalog program, will outperform or equal any top-down evaluation strategy for any query over a

program. (Ullman, 1989) Semi-naïve bottom-up evaluation is also conducive to parallelism - it is not

difficult to concurrently search for rules and perform joins across the knowledge.

2.2 SEMI-NAÏVE EVALUATION 11

2.2.1 Rule Transformation

Semi-naïve evaluation involves transforming each rule into a set of new rules. Consider the rule:

R0 ← R1, . . . , Rn.

For each Ri we may create new relations for each iteration k: Rk
i , and ∆Rk

i , and newRk
i . ∆Rk

i is an

incremental rule, it contains instances that were only exclusively newly created in iteration k, Rk
i denotes

the tuples of Ri known in iteration k, while newRk
i represents tuples that were generated in iteration k.

The new rules are constructed such that tuples will only be generated if they depend on a tuple generated

exclusively in the previous iteration, so we generate a series of rules from the original rule such that they

all involve a delta rule of the body atoms. We represent the relations using relational algebra.

For each iteration, k + 1 we solve over the following:

newRk+1
0 = (∆Rk

1 ./ R
k
2 .// R

k
n)∪(Rk

1 ./ ∆Rk
2 .// R

k
n)∪(Rk

1 .// R
k
n−1 ./ ∆Rk

n)\Rk
n

As a result, newRk+1
0 contains newly derived tuples from iteration k + 1, after we have processed all the

rules for iteration k, we may update our delta rule to consist of the new knowledge derived this iteration:

∆Rk+1
0 = newRk+1

0 . We update the total known knowledge as Rk+1
0 = Rk

0 ∪ newR
k+1
0 each iteration.

For relations with no rules in the IDB (i.e. they are only specified within the EDB), it is not necessary to

create delta rules - their set of tuples will not change which results in an empty delta each iteration, and it

is redundant to join over the empty set.

We do not simply iterate over all rules within the program within a single iteration. Semi-naïve follows

the precedence graph, in that rules should be computed after their ancestors. For recursive rules (including

mutually recursive rules), this is slightly different.

If a rule is not part of a cycle in the precedence graph (self-recursive or mutually recursive), there is no

need to compute delta knowledge, as the rule will reach a fixed point after a single iteration. For rules

that are part of a cycle in the precedence graph, only relations that are part of the SCC require delta

knowledge.

For the given Datalog program (EDB omitted) in Snippet 2.1, we demonstrate the precedence graph in

Figure 2.3, and the necessary semi-naïve rules.

2.3 EQUIVALENCE RELATIONS IN DATALOG 12

1 b(x) :- a(x).
2 b(x) :- c(x,x).
3 c(x,y) :- d(x,y), c(x,y).
4 d(x,y) :- c(x,y).

LISTING 2.1: Example Recursive
Datalog Program

a
b

c d

FIGURE 2.3: Precedence graph
for the rules within the Datalog
program in Snippet 2.1

An example ordering may be a → {c, d} →, b. Note that c and d are solved at the same time, i.e. an

iteration will consist of deriving tuples for both c and d - this is due to their mutual recursion - generation

of facts for one may consequently generate facts for the other. We do not require special constructed

rules for a nor b. Each iteration k + 1 for solving c, d consists of iterating over the following, until a

fixed-point is reached.

newck+1 = (∆dk ./ ck) ∪ (dk ./ ∆ck) \ ck

newdk+1 = ∆ck \ dk

2.3 Equivalence Relations in Datalog

Equivalence relations are binary relations that are reflexive, symmetric, and transitive. Any elements

that are related by virtue of these properties are to be considered within the same equivalence class. As

Datalog allows concise expression of relations, it is clear that expressing equivalence relations is also

simple. We include a binary relation with equivalence relation semantics in Figure 2.4.

1 relation(a,a) :- relation(a,_). // reflexive
2 relation(a,b) :- relation(b,a). // symmetric
3 relation(a,c) :- relation(a,b), relation(b,c). // transitive

FIGURE 2.4: Equivalence relations may be defined via adding three rules in Datalog

2.3 EQUIVALENCE RELATIONS IN DATALOG 13

From a single tuple added, many tuples may be consequently derived. If as part of this program’s EDB,

there were the rules: relation(1,2), the consequent knowledge of relation would be:

relation(1,1),relation(1,2),relation(2,1),relation(2,2)

If the EDB also now contained relation(2,3), 5 additional tuples would be part of the final computed

knowledge:

relation(1,3),relation(2,3),relation(3,1),relation(3,2),relation(3,3)

This ‘worst-case’ behaviour is exhibited when a single large equivalence class is part of the computed

facts. In the above example, only a single equivalence class exists - E = {1, 2, 3}. If we also added in

relation(4,5) into the EDB, we would consequentially have an addition 4 facts within the computed

knowledge - the equivalence classes in the program would now be E = {{1, 2, 3}, {4, 5}}. The number

of pairs in the equivalence relation is the sum of the square of the sizes of equivalence classes within the

relation: ∑
i∈E
|i|2

There are multitudes of use-case scenarios for equivalence relations in Datalog, we cover two in our

real-world benchmarks (Section 4). In addition to computing Bitcoin user-groups, and Steensgaard points-

to analyses, equivalence relations can be used to compute SCCs in graphs (Suthers, 2015); must-alias

pointer analyses (Kastrinis et al., 2018); computing optimal networking routes (Thau Loo, 2010) and

more.

Snippet 2.2 demonstrates an example Datalog program that contains an equivalence relation. The EDB

consists of three facts on lines 1-3. Figure 2.5 shows the EDB facts in black edges in the graph, whilst the

derived facts are shown in red. The program defines rules and facts for whether two people live in the

same suburb.

2.4 SOUFFLÉ SYNTAX 14

1 same_suburb(alice,bob).
2 same_suburb(charlie,bob).
3 same_suburb(derek, eve).
4

5 same_suburb(X,Y) :-
same_suburb(X,_).

6 same_suburb(X,Y) :-
same_suburb(Y,X).

7 same_suburb(X,Z) :-
same_suburb(X,Y),

8 same_suburb(Y,Z).

LISTING 2.2: Same suburb
equivalence relation in Datalog

alice

bob

charlie

derek eve

FIGURE 2.5: Explicit facts are de-
noted in black (EDB), derived facts
are in red

There are many derived facts in this example - from the declaration of 3 facts within the EDB, 10 facts are

evaluated as a consequence as a result from solving over the IDB (pictured in Figure 2.5 as red edges).

Any recursive evaluation strategy may require the traversing/evaluation of long paths, can result in a

number of solving iterations linear to that path length. The transitive rule of any specified equivalence

relation will incur this potential penalty.

2.4 SOUFFLÉ Syntax

SOUFFLÉ is a new Datalog engine that was designed for large-scale program analysis. The language

of SOUFFLÉ introduces a superset of Datalog containing types, functors including built-in arithmetic

predicates (such as infix addition: x + 1), aggregations (sum, average, string concatenation), records,

and more. With functors the evaluation of SOUFFLÉ programs becomes Turing complete (Keynes, 2017),

i.e., non-terminating logic programs can be constructed - this enables SOUFFLÉ to be fully-expressive. A

simple example of such a program is demonstrated in Snippet 2.3 which calculates the successor of a

number ad-infinitum.

LISTING 2.3: Non-terminating Datalog program

1 .decl succ(x : number)

2

3 succ(0).

4 succ(x+1) :- succ(x).

2.4 SOUFFLÉ SYNTAX 15

5 .output succ

In the above snippet, several important syntactical features are demonstrated:

• Types: each argument of user defined predicates uses types, which enforces type-correctness

between predicates. In this example, x is a numeric type

• Predicate Declarations: each rule defined must be declared with arity and types (line 1)

• I/O Qualifier: each predicate may be marked to output all rules to file (.output, line 5) or to

read facts in from a file (.input)

Output rules imply that all tuples for that rule must be generated - we do not specify goals in SOUFFLÉ ,

only that a relation must be fully computed. Goals can be emulated via creating a relation to be output

whose body consists of the goal to be proved. New types can also defined via the .type XXX statement.

Other functionality and syntax features are not covered in this article - the above is enough to describe all

future snippets of Datalog.

CHAPTER 3

Equivalence Relations in Datalog Engine

The major motivation of this work is to use specialised equivalence data-structure in a parallelised Datalog

engine. The specialised equivalence data-structure performs the rules for reflexivity, symmetry, and

transitivity in-situ, i.e. the rules do not need to be performed as part of the semi-naïve evaluation explicitly.

The advantage of this approach is that substantial performance gains are to be expected. For this purpose,

the Datalog engine needs to be modified so that the specialized equivalence data-structures can be used

seamlessly. There are two major undertakings in the design and implementation of equivalences. The

first undertaking is the modification of the semi-naïve evaluation approach, i.e., how can specialised

equivalence relations be used in conjunction with the semi-naïve evaluation approach. The second

undertaking is the design and implementation of a parallel equivalence data-structure for equivalence

relations that behaves like any other logical relations.

The formal definition of an equivalence relation is as follows: For elements within the domain D, an

equivalence relation may hold binary tuples R = (a, b) ∈ D × D, where the existence of tuples are

subject to the elements a and b existing within the same equivalence class. The equivalence classes is

defined as a binary relation, that is,

∀a ∈ D, (a, a) ∈ R

(a, b) ∈ R⇒ (b, a) ∈ R

for a, b, c ∈ D : (a, b), (b, c) ∈ R⇒ (a, c) ∈ R

The problem with the definition is that the domain of the binary relation could be quite large. For example,

if the binary relation is defined over the set of natural numbers. However, only a small subset of numbers

may be actually used in the concrete instance of a relation. Hence, we introduce a condensation of the

domain, i.e., we map the Datalog domain to an ordinal domain. The ordinal domain of a domain numbers

the elements of the original domain starting with zero. Hence, the ordinal domain of a domain densifies

16

3 EQUIVALENCE RELATIONS IN DATALOG ENGINE 17

the original values of the equivalence relation into dense ranges from zero to the number of elements

used in a concrete instance of a binary relation.

To efficiently express equivalence relations in Datalog, we propose a three layered data-structure for

equivalence relations. Each layer serves a purpose: The equivalence relation layer allows iteration over

the implicit pairs, insertion, and extension of tuples; the sparse mapping layer allows the storage of

sparse values efficiently; and the disjoint set layer provides a wait-free Union-Find data-structure, to store

equivalences between elements.

Equivalence Relation

Sparse Mapping

Union-Find

• Union-Find: Store elements of same re-
lation in a same-set structure
• Sparse Mapping: Provide value abstrac-

tion
• Equivalence Relation: Allow iteration

over all equivalence tuples

FIGURE 3.1: Architecture

Pictorially - elements within the same equivalence relation are stored densely encoded, as seen in Figure

3.4, on top of which a sparse-representation of the disjoint can be formed (Figure 3.3) that requires the

storage of the following bijective mapping:

e⇔ 1, f ⇔ 5, b⇔ 4, a⇔ 3, c⇔ 2, d⇔ 0

Figure 3.2 shows the corresponding pairs of the stored equivalence relation, for each equivalence class

the number of tuples is the square of the size of the equivalence class.

3.1 EQUIVALENCE RELATION LAYER 18

(a, a)

(b, b), (b, e), (b, f), (e, b), (e, e)
(e, f), (f, b), (f, e), (f, f)

(c, c), (c, d), (d, c), (d, d)

FIGURE
3.2: Pairs of the
equivalence rela-
tion

a

e

b

c d

f

FIGURE
3.3: Disjoint
sets of sparse
elements

3

1

4

2 0

5

FIGURE
3.4: Disjoint
sets of elements,
tightly encoded

3.1 Equivalence Relation Layer

An equivalence relation provides an Abstract Data-Type (ADT) to expose all pairs in the equivalence

relation and to insert new pairs to it. The interface is designed such that it mimics the functionality of a

binary relation that is explicitly stored. The operations of the ADT are very basic. The data-structure is

composed of various layers to perform the necessary operations of the equivalence relation. The data-

structure layers contains a generic interface mimicking a generic logical relations, a Densifier (discussed

later in more detail in Section 3.2) that compresses the domain of the equivalence relation to an ordinal

domain, and a parallel union-find data-structure to partition the elements into disjoint-sets.

To accommodate semi-naïve evaluation for equivalence relations, we must extend the behaviour for the

delta relations. Delta relations contain the new knowledge learned in the previous iteration, done so in

order to reduce the number of redundant calculations, as the generation of new knowledge only occurs

when considering the most recently learned facts. However, if this delta knowledge was stored explicitly

(i.e. all pairs are stored), we would lose out on some benefits of using the implicit representation for the

underlying relation. Thus we stored this delta knowledge also as an equivalence relation.

We extend the definition of the delta operation to be an over-approximation, that is, the delta knowledge

may include pre-computed knowledge from prior iterations. This can reduce the efficiency of the semi-

naïve evaluation, and for the worst-case, revert to the performance of naïve evaluation. By treating

the delta relation as an equivalence relation, this allows efficient generation of the updated relation (i.e.

Rk+1).

3.1 EQUIVALENCE RELATION LAYER 19

Our new definition for our equivalence relation delta - ∆eqrel is:

∆eqrelR
k+1
i = newRk+1

i �Rk
i

The � operator is the extension between the two equivalence classes such that the equivalence classes are

merged. A pictograph of the resulting delta relation is demonstrated in Figure 3.5. Superfluous edges are

marked in blue, these comprise the over-approximation. Note that reflexive relations, i.e. self-loop edges

are omitted from the graph for brevity.

a

b

c

f g

d
e

R
k

b

f

g c

newR
k+1

f

k+1
ΔR

b

a c

g

FIGURE 3.5: Resulting delta relation after the extension

These edges in the delta relation are not explicitly added during the extension step. Instead, we perform

the algorithm in 1 to extend a relation with another, also ensuring that no irrelevant classes are kept. The

equivalence class {d, e} is thus excluded from the resulting delta relation based on the example given in

Figure 3.5.

We supply the arguments Rk and newRk+1 as origR and newR respectively. Firstly, we iterate over the

new knowledge, newRk, and create elements representing each element that occur in both Rk and Rk+1.

We store these in a temporary set to ensure that we don’t cover existing elements multiple times.

For each element in this set, we add their corresponding equivalence classes into the new delta relation

for both old and new relations. We simply find the representative in that set, and insert a tuple between

that representative and the other elements within the set. This algorithm operates in amortised O(αn)

3.1 EQUIVALENCE RELATION LAYER 20

time - each element is visited at most once in each relation, where it will at most perform a constant

number of find or union queries to find the representatives of a class, or to add an edge (i.e. insert a

pair into a relation).

Algorithm 1 Return an extended relation
1: procedure EXTEND(origR, newR)
2: new-relation← empty relation
3: element-list← empty set
4: . Add elements that exist in both sets to our worklist
5: for element ∈ newR do
6: if element ∈ origR then
7: add element to element-list
8: end if
9: end for

10: . add all classes from oldR that contain an element from element-list
11: for element ∈ element-list do
12: class← equivalence class that contains element
13: for child ∈ class do
14: insert (element, child) into new-relation
15: . Ensure we don’t visit a class twice
16: if child ∈ element-list then
17: remove child from element-list
18: end if
19: end for
20: end for
21: . add all classes within newR
22: for class ∈ newR do
23: representative← representative of class
24: for element ∈ class do
25: insert (representative, element) into new-relation
26: end for
27: end for
28: return new-relation
29: end procedure

The read operations of the data-structure deals with accessing the pairs of the equivalence relations.

The access has different modes depending whether the first, the second, or both elements of the pair

are fixed. The read access itself is performed via an iterator. The iterator has the usual operations of

checking whether all tuples have been iterated (HASNEXT()), advancing to the next tuple (NEXT()),

and accessing the current tuple (GETELEMENT()).

Note that for the semi-naïve evaluation strategy, we do not need to support for simultaneous read and

write operations. The semi-naïve evaluation strategy has two distinct phases, which are entered via

3.1 EQUIVALENCE RELATION LAYER 21

barriers. These phases are alternating. The first phase may have multiple concurrent reads but no writes.

The second phase has multiple concurrent writes but no reads. This observation alleviates the design of

the data-structure and simplifies issues which would normal occur in concurrent data-structures.

3.1.1 ADT

Provided this layer is an abstraction layer, we must forward on appropriate function calls to the lower

layers, modifying them as required. We also provision an iterator interface, that is, providing methods to

call that will allow iteration over the tuples in certain fashions, or modes. SOUFFLÉ requires the support

of 4 different modes:

• ALL(): iterate over all pairs in the equivalence relation (∗, ∗)

• PREFIX(α): iterate over all pairs where the first element of the pair is fixed (α, ∗)

• SUFFIX(β): iterate over all pairs where the second element of the pair is fixed (∗, β)

• FACT(α,β): check the existence of a pair fixing both elements with concrete values (α, β)

These iterators are necessary to enable efficient joins within SOUFFLÉ . Joins can be simply performed

via finding matching tuples when elements are fixed within tuples.

We also require a PARTITION(d) function, that will provide a number of iterators that when iterated

over will explore the entire set of tuples implicitly stored within the equivalence relation. The parameter

d is a hint, whereby approximately d iterators will be returned, that cover different (in our case, disjoint,

but not necessarily the same size) portions of the tuples of the equivalence relation.

In order to modify & query the set of tuples, the following operations are also provided:

• INSERT(x,y): insert the tuple (x, y) into the equivalence relation, implicitly inserting tuples

implied by the reflexivity, symmetry, and transitivity.

• CONTAINS(x,y): return whether the tuple (x, y) exists within the equivalence relation.

• INSERTALL(other): insert all tuples contained within the relation other. We have speciali-

sations for when other is an equivalence relation.

• EXTEND(other): perform delta extension for this relation, merging the equivalence relation

other into this relation, resulting in the minimal delta equivalence relation.

• CLEAR(): reset this equivalence relation to contain no tuples, emptying it.

• SIZE(): calculate the number of tuples implicitly stored within this equivalence relation.

3.1 EQUIVALENCE RELATION LAYER 22

We will use the term anterior to refer to the first term in a tuple, whereas posterior will refer to the latter.

3.1.2 Iteration

The iterators simulate an explicitly stored binary relation. However, the equivalence relation is stored

implicitly, and as a result the algorithms for the enumeration of these binary pairs are more involved.

We fetch and store the disjoint-sets induced by the union-find data-structure into individual lists, and

upon these we iterate over. In Figure 3.6, an example iterator design is shown. We include markers for

the current list (coloured blue), and current anterior (green caret) and current posterior (red star) of the

present tuple. These lists act as a cache for the iterators to iterate over.

These lists are not necessarily ordered, either internally or externally, except they do require some

kind of iteration over them. For each iterator, there are three operations: NEXT(), HASNEXT(), and

GETELEMENT().

c d

a

f e b

* ^

FIGURE 3.6: Equivalence Cache
that corresponds to the equivalence
classes pictured in Figure 3.7

a

e

b

c d

f

FIGURE 3.7: Example equiva-
lence class partitioning

The approach for iterating over all pairs (ALL()) is simple, as seen in Algorithm 2; we advance the

posteriorIterator (red star *) until we hit the end of the list (indicated in blue). At that point, the

anteriorIterator (green caret ^) is stepped along one position. This repeats until both the anteriorIterator

and posteriorIterator reach the end of the list, at which point, we move onto the next list and reset the

anteriorIterator and posteriorIterator to point to the start of the now current list. We repeat this procedure

until we run out of lists.

3.1 EQUIVALENCE RELATION LAYER 23

Algorithm 2 Advance the iterator - ALL()
1: procedure NEXT()
2: Advance posteriorIterator
3: if posteriorIterator is at the end of the current list then
4: Advance anteriorIterator
5: if anteriorIterator is at the end of the current list then
6: Advance to the next list
7: if there is no next list then
8: . We have no more to iterate
9: return failure

10: end if
11: Move anteriorIterator to the start of the current list
12: end if
13: Move posteriorIterator to the start of the current list
14: end if
15: end procedure

The logic for whether there is a next element simply checks whether stepping will cause the iterator to

overflow (reach the end of the list).

Algorithm 3 Check whether there is a next tuple - ALL()

1: procedure HASNEXT()
2: if anteriorIterator at end of current list and posteriorIterator at end of current list and there is

no next list then
3: return false
4: else
5: return true
6: end if
7: end procedure

Retrieving the tuple is retrieving the elements that anteriorIterator and posteriorIterator point to, and

pack them into the front and back of a tuple, respectively.

Algorithm 4 Retrieve the current tuple from the iterator - ALL()

1: procedure GETELEMENT()
2: return (element at anteriorIterator, element at posteriorIterator)
3: end procedure

For iteration over tuples in the equivalence relation with fixed anterior (PREFIX(α)), we fix both the

anteriorIterator and the current list. When the posteriorIterator reaches the end of the current list, this

marks the end of the iterator.

3.1 EQUIVALENCE RELATION LAYER 24

Algorithm 5 Advance the iterator - PREFIX(α)
1: procedure NEXT()
2: Advance posteriorIterator
3: if posteriorIterator is at the end of the current list then
4: . We have no more to iterate
5: return failure
6: end if
7: end procedure

Whilst the GETELEMENT() function remains the same between these two iterator modes, similar

changes must be made to the HASNEXT() predicate:

Algorithm 6 Check whether there is a next tuple - prefix(α)

1: procedure HASNEXT()
2: if posterioriterator at end of current list then
3: return false
4: else
5: return true
6: end if
7: end procedure

For the SUFFIX(β) iterator, this is nearly identical. Instead, the posteriorIterator is fixed to point to the

element β, whilst the anteriorIterator now advances on successive NEXT() invocations. FACT(α,β) is

also implemented as an iterator, but both the posteriorIterator and anteriorIterator are fixed, the current

list is also static; HASNEXT() will always return false, and attempting to call NEXT() will result in

failure.

For iterators with fixed terms (as is used internally during joins), it is efficient to find the corresponding

list in practice, as the list is stored in the cache hash-map, with representatives of the equivalences classes

as keys which can be found in near constant time.

3.1.3 Cache Generation & Implementation

We apply caching as a main technique to accelerate the processing of iterators for the read-phase. Caches

are volatile, i.e., if in the next write-phase pairs are added, the caches are invalidated. Figure 3.6 shows

an abstract representation of the cache, in practice the lists are stored as values within a hash map, with

representatives (discussed further in 3.3) of the disjoint-set as the keys. We design the cache such that it

3.1 EQUIVALENCE RELATION LAYER 25

is efficient over all iterator operations, and using thread-safe data-structures such that the construction of

this cache can be performed in parallel.

Generating the cache requires only a single pass over the underlying disjoint-set. As the disjoint-set is

stored within a union-find data-structure (described further in Section 3.3) as a forest, each tree within

that forest contains a single root which is known as the representative for that set. We iterate over all

of the elements within the set, and insert that element into a list dictated by the representative of the

element’s disjoint-set, resulting in elements within the same disjoint-set being inserted into corresponding

lists. This can be done in parallel, if representative to list mapping is done via a thread-safe hash-map,

provided the list is also thread-safe.

Algorithm 7 details the general process of generating the cache. We directly interact with lower layers;

iterating over the dense values stored within the union-find data-structure (named disjoint-sets in the

following snippet), and also mapping these to their respective sparse-values via the dense to sparse

mapping in the Densifier layer (using the toSparse function).

Algorithm 7 Generate the equivalence cache

1: procedure GENERATE-CACHE()
2: for element ∈ disjoint-set do
3: representative← disjoint-set.find(element)
4: sparse-rep← toSparse(representative)
5: sparse-element← toSparse(element)
6: if sparse-rep 6∈ cache then
7: cache[sparse-rep]← empty list
8: end if
9: cache[sparse-rep].append(sparse-element)

10: end for
11: end procedure

As the above algorithm is designed to be distributed across parallel workloads, in the actual implementa-

tion we iterate over the elements by assigning threads portions of the disjoint set array to independently

iterate over. This construction is simple in OpenMP, wherein a preprocessor macro can be added to

enable this functionality. The disjoint-sets are stored within a contiguous array, where elements are

assigned indexes to represent a value. A shortened version of the parallel C++ code is provided below in

Snippet 3.1. We use the Intel TBB tbb::concurrent_hash_map (Intel, 2017) in order to provide

a thread-safe and fine-grained locking mechanism which simplifies the process for creating the list if

it does not exist already. For the list, we use a custom thread-safe random-access list, as described in

Section 3.3.3.

3.1 EQUIVALENCE RELATION LAYER 26

LISTING 3.1: C++ parallel cache generation

1 if (isCacheInvalid) {

2 const size_t sets = ds.size();

3 #pragma omp parallel for // dictate that this loop can be performed

in parallel

4 for (size_t i = 0; i < sets; ++i) {

5 size_t rep = ds.find(i);

6 size_t sparseRep = sds.toSparse(rep);

7 size_t sparseEl = sds.toSparse(i);

8

9 bool exists = cache.count(sparseRep);

10 // thread-safe list creation

11 if (!exists) {

12 // this acts as a fine grained writer’s lock

13 accessor a;

14 bool exists = cache.insert(a, sparseRep);

15 // only create the list if it doesn’t exist

16 if (!exists) a->second = make_list();

17

18 a->second->append(sparseEl);

19 } else {

20 // fine-grained reader’s lock

21 const_accessor a;

22 cache.find(a, sparseRep);

23

24 a->second->append(sparseEl);

25 }

26 }

27 cache.rehash();

28 }

We have found through internal profiling, that we observe a sub t-linear run-time improvement for t

threads. We suspect this is due to the current method of iterating over the disjoint set list as is default for

OpenMP. In this example, OpenMP uses a scheduler to assign the iterations to each thread pool (Lockman,

3.1 EQUIVALENCE RELATION LAYER 27

2013), however, by modifying the loop such that each thread worked on contiguous blocks we believe we

would see a reasonable speed-up.

The use of the isCacheInvalid variable is to only generate the cache when necessary. The cache is

designated to be stale if there has been a modifying operation on the equivalence relation - the following

set of operations invalidate the cache (and thus unconditionally setting isCacheInvalid to be true):

INSERT, INSERTALL, EXTEND, and CLEAR. If we wanted to avoid cache invalidation, this would

require being able to merge sets of lists quickly, including finding which lists to merge, which is the

purpose of the union-find data-structure as used in the lowest layer. The isCacheInvalid variable

must be atomic to prevent contending threads corrupting the stored value.

Due to the behaviour of the implemented hash-map, we must rehash the hash-map prior to iteration. In

the case of Intel’s TBB, not doing so leads to some values skipped or repeated during iteration. (Nappa,

2018)

For the size() operation, this cache generation must be performed prior. In order to calculate the

number of pairs, we must know the size of each disjoint-set. The size is simply the sum of the square of

sizes for each disjoint set. The other operations PARTITION, and iterators (ANTERIOR, etc) also

require the generation of the equivalence cache.

3.1.4 Partitioning

As the partition(count) function is designed to generate a number of iterators over the equivalence

relation (so as to allow parallel iteration over a number of threads), we require additional iterator types to

divide the number of pairs to iterate over fairly. The count argument is only meant as a guide as to how

many partitions should be created - this value is by default 400, despite the degree of parallelism usually

used by SOUFFLÉ programs being less than 64, due to the cost of sharing data across multiple socket

machines. (Scholz et al., 2016).

The new iterator CLOSURE(d) creates an iterator per disjoint set. This is beneficial as the iterator now

operates solely on a single list, is the only iterator to exist for that disjoint set. The number of pairs

covered within a CLOSURE iterator is the square of the size of that disjoint set, and can potentially be

used to divide work when the number of disjoint sets are large.

3.1 EQUIVALENCE RELATION LAYER 28

The heuristic we use for generating these partitions is simple, as demonstrated in Algorithm 8. Con-

structing the partitions is greedy - if there are too many disjoint sets there will be a single iterator over

each equivalence class (using CLOSURE), otherwise, we iterate over each equivalence class (disjoint-set),

and if it is large we split up the disjoint-set into many iterators, one for each element in the class (using

ANTERIOR). If the class is small, we generate a CLOSURE iterator for that disjoint-set. We currently do

not have the ability to group multiple equivalence classes within a single iterator.

Algorithm 8 Partition the equivalence relation to a number of iterators

1: procedure PARTITION(numIterators)
2: iterators← empty list
3: . Supply an iterator per equivalence class
4: if number of equivalence classes ≥ numIterators then
5: . Add a closure iterator for the representative of each set
6: for class ∈ equivalence classes do
7: rep← REPRESENTATIVE(class)
8: iterators.append(CLOSURE(rep))
9: end for

10: return iterators
11: end if
12: totalPairs← number of pairs within the equivalence relation
13: for class ∈ equivalence classes do
14: . if this class needs to be split up into smaller ones
15: if class.size ≥ totalPairs

numIterators then
16: for element ∈ class do
17: iterators.append(ANTERIOR(e))
18: end for
19: else
20: . otherwise append the closure
21: rep← REPRESENTATIVE(class)
22: iterators.append(CLOSURE(rep))
23: end if
24: end for
25: return iterators
26: end procedure

This partitioning is not performed in parallel - currently SOUFFLÉ operates on the expectation that the list

returned is a STL container (and as such isn’t embarrassingly parallel to work on). It would not be too

difficult to modify this to accept our concurrent list to be returned, and thus be made to work in parallel.

We believe the advantage for this approach would be most noticeable for many small disjoint-sets, or a

single large disjoint-set (where we iterate over to generate ANTERIOR iterators).

3.1 EQUIVALENCE RELATION LAYER 29

3.1.5 Benchmarks

We perform simple benchmarks to both the worst- and best-case scenarios for the data-structure. We

test two Datalog programs, one that generates a n-sized disjoint set, where the other generates n 1-sized

disjoint sets. We compare the implementation against an explicit representation for this dataset, which

uses a Binary Tree (BTree) as its underlying data-structure. This BTree is a heavily optimised thread-safe

implementation, which is used as the default data-structure for all of SOUFFLÉ ’s relations. These

benchmarks were repeated 20 times for each run.

3.1.5.1 Large Disjoint Set

For the single disjoint-set program, the version that uses our new data-structure is demonstrated in Snippet

3.2. We mark the relation mega as an equivalence relation by putting the keyword eqrel as part of

the declaration. This will now make the mega relation store its tuples within this equivalence relation

data-structure. We use the term eqrel in experiments and figures to denote the implicit representation

throughout the article.

The program is simple, we generate numbers from 1 until lim(x) (this is specified in a separate fact file),

and also the numbers lim(x) + 1 up until lim2(y) (also specified in a fact file). The .printsize

mega statement will print the size of the relation (i.e. how many tuples are stored) at the end of the

program.

LISTING 3.2: Single Set Datalog Eqrel Program

1 .decl gen1(x: number)

2 gen1(1).

3 gen1(x+1) :- gen1(x), !lim1(x).

4

5 .decl gen2(x: number)

6 gen2(x+1) :- gen2(x), !lim2(x).

7

8 .decl lim1(x : number)

9 .decl lim2(x : number)

10

11 .decl mega(x : number, y : number) eqrel

12 mega(x,y) :- gen1(x), gen2(y).

3.1 EQUIVALENCE RELATION LAYER 30

13

14 .input lim2()

15 .input lim()

16 .input gen2()

17

18 .printsize mega

If we specify lim1(4), gen2(5), and lim2(8), this will result in the following facts:

gen1→ gen1(1), gen1(2), gen1(3), gen1(4)

gen2→ gen2(5), gen2(6), gen2(7), gen2(8)

This will allow the direct generation of mega(1,5), mega(1,6), ..., mega(2,5), mega(2,6),

..., mega(4,8). Additionally, as the rule has been marked as an equivalence relation, then all the

reflexive (e.g. mega(1,1)), symmetric (mega(5,1)), and transitive rules will be added in - however

this example will not generate any rules that can exclusively be discovered through transitivity.

Snippet 3.3 is the equivalent explicit representation. Note the omitted eqrel specifier, and the additional

rules to denote reflexivity, symmetry, and transitivity. For brevity, we omit the number generator relations.

LISTING 3.3: Single Set Datalog Explicit Program

1 .decl mega_explicit(x : number, y : number)

2 mega_explicit(x,y) :- gen1(x), gen2(y).

3 mega_explicit(x,x) :- mega_explicit(x, _). // reflexive

4 mega_explicit(x,y) :- mega_explicit(y, x). // symmetric

5 mega_explicit(x,z) :- mega_explicit(x, y), mega_explicit(y, z). //

transitive

6

7 .printsize mega_explicit

We observe the running times for the ‘worst-case’ scenario in Figure 3.8.

3.1 EQUIVALENCE RELATION LAYER 31

0 50 100 150 200 250 300 350 400
Number of Elements

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(s

)
Single, Large Equivalence Class

Eqrel 1 Thread
Eqrel 2 Threads
Eqrel 4 Threads
Eqrel 8 Threads
Explicit 1 Thread
Explicit 2 Threads
Explicit 4 Threads
Explicit 8 Threads

FIGURE 3.8: Total running time for a large equivalence class

The running times for the implicit representation programs appear to grow far too slowly to be measured

accurately, for this small dataset. On the other hand, we are forced to restrict the experiment to run for

lower input ranges due to the apparent quadratic increase in running time for the explicit program.

We can see the growth in memory appears to be linear in both programs. Whilst the trend for the explicit

program shows a much steeper slope, this is not quadratic as would be expected. The data is much too

erratic to be reliably measured however, as Figure 3.9 demonstrates.

3.1 EQUIVALENCE RELATION LAYER 32

0 50 100 150 200 250 300 350 400
Number of Elements

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6
M

em
or

y
(M

B
)

Single, Large Equivalence Class

Eqrel 1 Thread
Eqrel 2 Threads
Eqrel 4 Threads
Eqrel 8 Threads
Explicit 1 Thread
Explicit 2 Threads
Explicit 4 Threads
Explicit 8 Threads

FIGURE 3.9: Total resident memory for a large equivalence class

We look at larger data-sets in section 4.1, where the expected quadratic memory consumption is observed.

As a result of, we have empirically shown using an explicit representation may incur a quadratic space

penalty for equivalence relations, while the implicit representation retains linear space.

3.1.5.2 Many Small Disjoint Sets

We also generate a benchmark which focuses on an example where there are no implicit pairs being

stored. Instead of generating two series of numbers and performing a cross-product, we generate a single

range, with the rule definition describing reflexivity only. We demonstrate the implicit eqrel program in

Snippet 3.4, and the explicit program in 3.5. We omit the definition of gen1.

LISTING 3.4: Many Set Datalog Implicit Program

1 .decl mega(x : number, y : number) eqrel

2 mega(x,x) :- gen1(x).

3.1 EQUIVALENCE RELATION LAYER 33

The explicit version is similar to as is the case above, the only change is the initial definition of the rule

to not include two ranges. No rule is needed to express reflexivity, as it is implied by the first rule of

mega_explicit.

LISTING 3.5: Many Set Datalog Explicit Program

1 .decl mega_explicit(x : number, y : number)

2 mega_explicit(x,x) :- gen1(x).

3 mega_explicit(x,y) :- mega_explicit(y, x).

4 mega_explicit(x,z) :- mega_explicit(x, y), mega_explicit(y, z).

20000 40000 60000 80000 100000
Number elements within equivalence class

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

Isolated Equivalence Class

Eqrel (1)
Eqrel (2)
Eqrel (4)
Eqrel (8)
Explicit (1)
Explicit (2)
Explicit (4)
Explicit (8)

FIGURE 3.10: Total running time for small equivalence classes

As expected, the solving time for the implicit equivalence relation program is slower than the explicit

representation. This test captures what would be the worst-case scenario with regards to solving time, as

there is no additional pairs stored through the implicit equivalence relation. Interestingly, the overhead in

runtime is only minor. For the implicit representation, we attribute this overhead to the cost of managing

the auxiliary data-structures, such as the sparse mapping, cache, and more.

3.1 EQUIVALENCE RELATION LAYER 34

We see that for both versions, the runtime increases as the parallelism factor increases. We are currently

unaware of the root cause or bottlenecks for this benchmark.

20000 40000 60000 80000 100000
Number elements within equivalence class

20

30

40

50

60

70

80

M
em

or
y

(M
B

)

Isolated Equivalence Class

Eqrel (1)
Eqrel (2)
Eqrel (4)
Eqrel (8)
Explicit (1)
Explicit (2)
Explicit (4)
Explicit (8)

FIGURE 3.11: Total resident memory for small equivalence classes

We also see that the memory overhead for the implicit program scales poorly as compared to the explicit

representation. We can attribute this to the multiple necessary hash-maps (equivalence cache, and

Densifier layer (as described later)), and other auxiliary data that requires storage, although this would

require further fine-grained profiling to confidently confirm.

Computational overhead from partitioning would also be a key contributor to the time slowdown observed

in the implicit representation. This is especially the case for the isolated equivalence classes, as a separate

iterator is generated for each of the classes which in this program is linear to the number of inputs. As

part of the generated C++ code, SOUFFLÉ will always call this partitioning, even if there is no threading

enabled (via compile-time flags). It would be worth investigating the speed-ups that may potentially be

gained if this is omitted from the generated code for single-threaded execution. Additionally, as noted

above, the partition function may be a candidate for parallelism - this would require additional internal

profiling to investigate the potential benefits.

3.2 DENSIFIER 35

Another optimisation that should be benchmarked/profiled in the future, would be different conditions for

partitioning, and the effect that they would impart on the time of iteration. Other partitioning approaches

may result in a more balanced partitioning, and thus can reliably lead to better iteration performance, at

the cost of partitioning time.

Investigating the bottlenecks of cache generation and reducing the number of lists that are invalidated

during modification is another potential area of improvement for this Equivalence Relation data-structure

layer.

3.2 Densifier

The union-find implementation of the lower layer uses a contiguous array to represent the forest of

disjoint-sets efficiently. As a result, the indices for the array become the element’s identifiers, that is,

they are densely encoded. However, elements of input the equivalence domain are not necessarily tightly

encoded, i.e., there could be gaps between two elements in its bitwise representation, depending on the

program. As such, we require a way to store these arbitrary inputs in the relation.

To achieve a dense encoding of the elements, we resort to the notion of ordinal sets. An ordinal set is a

set with a mapping between elements of the set and natural numbers, hence, the ordinal set of elements

imposes a total order. The first element with respect to the total order corresponds to zero and the last

element corrsponds to the cardinality of the domain minus one.

We name the equivalence domain S. The ordinal set 〈S, o〉 is defined by the carrier set S and the ordinal

numbering function o : S→ {0, . . . , |S| − 1}. The ordinal numbering function is bijective for which the

inverse function o−1(l) is defined as o(a) = l⇔ o−1(l) = a.

The order among the elements in S is arbitrary, in practice these are unordered through the use of a

hash-map to apply the forward mapping of o. This encoding of ordinal numbers is succinct: assuming

that the ordinal number is provided, the elements of the ordinal set can be represented by log2 |S|

elements. (Shannon, 1948)

For our implementation of disjoint-sets we require a densification of numbers, i.e., translating elements

of the equivalence domain into their ordinal numbers.

3.2 DENSIFIER 36

We call this new data-structure the Densifier. The order among the elements is a temporal order. The first

element that is added to the ordinal set is assigned zero; the second element one and so forth. Although

this is a very simplistic data-structure, it requires high-performance for concurrent use.

3.2.1 ADT

For this purpose we construct an own-data structure that has three operations.

The first operation:

〈S′, o′〉 = make_element(〈S, o〉, a)

takes the ordinal set 〈S, o〉, and extends set S with element a and assigns a a new ordinal number in

function o′. The resulting ordinal set is denoted by 〈S′, o′〉, and contains this new mapping.

The second operation:

ordinal(〈S, o〉, a)⇒ l

maps element a to its ordinal number l i.e., the return value of ordinal is o(a).

The third operation:

sparse(〈S, o〉, l)⇒ a

maps an ordinal number l from the range {0, . . . , |S| − 1} to its element a, i.e., the sparse operation

returns the value o−1(l), the functional inverse of ordinal.

We implement the Densifier data-structure using a hash-map and a dynamic array. The hash-map is used

to translate an element of the equivalence domain to an ordinal number and the array is used to map

an ordinal number to an element. The issue of the implementation is that numerous threads will try to

introduce new elements to the ordinal set. Thus it needs to be designed to avoid contention.

In our implementation, the ordinal and make_element operations are merged into a single interface

- densify - where queries to retrieve the ordinal values for a given sparse value, either generate a new

ordinal number and assign that to the sparse value iff the sparse value has not been seen before, otherwise

the existing ordinal associated to the sparse value is returned.

3.2 DENSIFIER 37

The unification is performed due to the inherent relationship between the two - make_element shall not

be called multiple times for a single sparse value, whilst ordinal must only be called for existing sparse

values. This simplifies the implementation due to potential data-races if the methods were implemented

separately.

Figure 3.12 simulates the following sequential ADT operations, where initially no sparse values have

been queried. The return value of each query is the dense value pointed to for each sparse value.

densify(a)→ densify(b)→ densify(c)→ densify(a)→ densify(d)

FIGURE 3.12: Simulation of densification of the sparse values {a, b, c, d}

This results in the following state in the hash-map, and dynamic array:

a

d

b

c

0

3

1

2

FIGURE 3.13: Resulting state in
the hash map

0
a

index:

value:

1 2 3
b c d

FIGURE 3.14: Resulting state in
the dynamic array for the provided
sequential operations.

To retrieve a dense value for a specified sparse value, we must only create it if it doesn’t already exist

within the mapping. In a concurrent context, we either may do this atomically via locking, or through

optimistic allocation wherein a new value is created, atomically set in the hash-map if the key does not

exist, otherwise the new value is cleaned up and the existing value is used. Either of these methods can

be used, depending on the underlying hash-map. For example, Intel’s tbb::concurrent_hash_-

map employs fine grained readers-writers locks, which abates the cost that coarse locking would incur.

3.2 DENSIFIER 38

For the latter method, we applied both the Libcuckoo hash-map (Goyal et al., 2018) and the Junction

hash-map (Preshing, 2016a) with the optimistic approach.

3.2.1.1 Optimistic Assignment:

In order to minimise the number of clean up operations that occur, the look-up first checks whether there

is a dense value already existing, and if so it is returned. If this is not the case, then a new ordinal value

is assigned, which will then be attempted to be set as the dense value. We introduce the concept of a

getsert(x, a) operation, which will attempt to set the value mapping for x to a iff it is not already set, and

returns what the value currently is - if it had already been set, the original value is returned, otherwise

the operation returns a. This getsert operation is analogous to a compare-and-swap operation, but in the

context of hash-maps rather than the atomicity of single values. Checking this return value allows us to

clean up our spuriously assigned ordinal value. Note that the append(v) operation doesn’t just append

v to the end of the array and return the index it was written to; the data-structure we use allows clean-up,

that is, indices can be marked to be re-used, and the next append operation will use the next available

free index.

We demonstrate the optimistic approach as densify-opt in Algorithm 9.

Algorithm 9 Obtain the ordinal value for this sparse key

1: procedure DENSIFY-OPT(sparse)
2: dense← sparseToDenseMap[sparse]
3: if dense does not exist then
4: newDense← denseToSparseMap.append(sparse)
5: . attempt to set the dense value to this newly created value
6: dense← sparseToDenseMap.getsert(sparse, newDense)
7: if dense 6= newDense then . We were beaten
8: allow newDense to be reassigned in the denseToSparseMap
9: end if

10: end if
11: return dense
12: end procedure

This method of operation leaves little overhead in the range of the dense value domain. If there are

t threads at most concurrent operating, and the number of elements in the sparse value set is n, our

upper-bound for the largest element in the dense value domain is n+ t− 1. For the typical execution

contexts that SOUFFLÉ is used in, t is typically between 1 and 64, and that the largest value in the dense

3.2 DENSIFIER 39

value domain is observed to usually be n − 1 indicating low levels of contention on the last allocated

elements.

Whilst dense values are assigned to sparse values, the converse is not true. We will only ever query dense

values that already have an existing sparse value mapping to them (we insert the sparse value into the

dense map first), and thus do not need to consider this event. As a result, retrieving a sparse value for a

given dense value is trivial, simply return the value stored at index dense.

Algorithm 10 Obtain the sparse value for this ordinal key

1: procedure INVERSE(dense)
2: return denseToSparseMap.at(dense)
3: end procedure

These algorithms do not strictly apply to all choices of data-structures that a sparse to dense map could

be, as this getsert(x,a) operation may not necessarily be able to be implemented in a concurrent

context. This operation may be replaced with a fine-grained locking scheme, which then allows us to

eschew the overhead in the dense value domain, and keep it strictly tight. In Section 3.2.2, we explore the

different requirements of the hash-maps.

3.2.1.2 Locking Assignment:

We also explore the second approach to keep consistency between the two mappings - the use of locks. A

typical goal of locks is to ensure that each lock is not highly contended, which is the dominating cost of

use. (Preshing, 2011) There are several methods for doing so; increasing the granularity to be fine grained

locking, increasing the number of locks and stratifying over them, and more. The ability to use these

different locking techniques is dependent on the use case.

We introduce stratified locking as a general technique to reducing lock contention, wherein multiple

locks are created, and for an operation on an element that is required to be exclusive for that element,

we deterministically choose a lock to obtain. If we are operating on a key-value store, we can use the

key to determine which lock to obtain - by using the last log2(#locks) bits of the key (or if it is not well

distributed, of its hash) we can pick a lock by an index. For example, Snippet 3.6 demonstrates a simple

stratified locking scheme, for 8 locks. We use a bitmask to select the index of which lock we will choose,

and lock it. Unlocking would involve a similar lookup.

LISTING 3.6: Example Stratified Locking Scheme

3.2 DENSIFIER 40

1 void lock(K key) {

2 // assuming 8 locks

3 return locks[hash(key) & 0b111].lock();

4 }

This approach is general in that for any hash-map that is able to use the above optimistic allocation

method, it can be transformed into a stratified locking example. We have not yet implemented this method,

and as such do not yet know of the performance differences between both implementations.

We can easily use fine-grained locking; the Intel hash-map supports per-element locking, so that we can

query if a dense value has been assigned and create a dense value for it atomically. This requires a large

number of locks, and will lead to a linear space overhead, as each bucket requires its own lock, and the

number of buckets is linearly proportional to the number of elements.

As we employ locking, the algorithm differs slightly, as seen in Algorithm 11 as densify-tbb.

Although in the algorithm we explicitly unlock, in our implementation we don’t require this; the writer’s

lock is implemented such that when the variable leaves its scope, the lock is automatically freed.

Algorithm 11 Obtain the ordinal value for this sparse key using a Intel TBB hash map

1: procedure DENSIFY-TBB(sparse)
2: writerLock← empty reference
3: . access the element, and claim the writer’s lock at that position
4: isNew = sparseToDenseMap.find(sparse, writerLock)
5: if isNew then
6: . reserve a new dense value, and assign it to this element
7: newDense← denseToSparseMap.append(sparse)
8: writerLock.value← newDense
9: end if

10: unlock writerLock
11: return writerLock.value
12: end procedure

We have found through internal profiling that there was no significant benefit to using a reader’s lock

and upgrading to a writer’s lock in the above algorithm, even for heavy read-only usage. In 3.2.3 we

demonstrate the difference in performance for various usages.

3.2 DENSIFIER 41

3.2.2 C++ Implementation

The implementation of this Densifier layer acts as a FaÃğade for the below layer. It provides access to the

Disjoint Set functionality, however the interface only deals with sparse values. For each Disjoint-Set ADT

function we map to a dense value and calls the respective function on the disjoint-set layer, providing the

dense value as an argument instead.

Retrieving a sparse value for a given dense value is required only for internal operations, specifically it is

used for the fast generation of the equivalence cache, as mentioned in the Equivalence Relation section.

This is primarily due to the constant overhead of densification via the hash-map; iterating over the keys,

and finding the sparse representative is costly as compared to iterating over the contiguous disjoint-set

array, and then performing sparsifcation via lookups in an array. As mentioned, we use a concurrent

hash-map for the sparse to dense mapping, and a concurrent list (O(1) random access, this is described

further in 3.3.3 as PiggyList).

We provide the following densification strategies for four different hash-maps:

(1) The STL std::unordered_map (GCC 7.3.0)

(2) Intel’s tbb::concurrent_hash_map (Intel, 2017)

(3) Jeff Preshing’s junction::ConcurrentMap_Leapfrog (Preshing, 2016b,a)

(4) libcuckoo by Goyal et al. (Li et al., 2014; Fan et al., 2013; Goyal et al., 2018)

The first, std::unordered_map, requires a coarse lock, as it supports at most one writer at a time.

The Intel map as mentioned uses the fine-grained locking mechanism, whilst the last two (Libcuckoo and

Junction) are both integrated using the optimistic allocation method. In the future we wish to test the

stratified locking methods.

3.2.3 Benchmarks

In order to evaluate the performance of the Densifier with differing underlying data-structures, we run a

series of benchmarks on several scenarios. As the dense to sparse mapping (sparsifcation) remains near

equivalent between the different choices in hash maps, we only are required to benchmark the sparse to

dense map (densification) implementations. Namely, we run toDense(x) for different sets of x, and

degrees of concurrency.

3.2 DENSIFIER 42

We have four sets of choices of variables, for t threads, and n number of operations:

• Same: all threads will call toDense(1)

• Unique: all threads will call toDense(i) where i is within {1, . . . , n}, and is uniquely

densified once

• Random: all threads will call toDense(i) for some randomly chosen set of i ∈ Z232

• Contending: all threads will call toDense(i) for i ∈ {1, . . . , nt }

The random set of variables is generated a priori to insertion, using the Xoroshiro128+ (Blackman and

Vigna, 2018) random number generator. We intentionally choose a fixed domain to increase the relative

level of contention within the densification calls. The final variable set attempts to ensure that each thread

will be concurrently densifying the same sparse value & thus increase intention.

The benchmarks were performed on an 8 threaded machine with a Intel(R) Core(TM) i7-7700K CPU @

4.20GHz CPU, with 64GB DDR4 RAM clocked at a frequency of 2333MHz.

3.2.3.1 Same-key densification:

Due to an unresolved memory leak in the Junction hash-map, we were forced to restrict it to lower

element counts during benchmarking.

For single-threaded use, it is clear that the std::unordered_map is significantly faster, although as

the parallelism factor the STL container degrades drastically. Interestingly, the Libcuckoo map performs

best in the 8 threaded environment, but is worse than TBB in 4 threads, and also marginally for 2 threads.

Online benchmarks tend to show that Junction significantly better (Preshing, 2016c), yet we observe the

contrary across most benchmarks.

3.2 DENSIFIER 43

0 20 40 60 80 100
Number of elements (millions)

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% same key lookup

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.15: Same key densification, single thread

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% same key lookup

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.16: Same key densification, two threads

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% same key lookup

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.17: Same key densification, four threads

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% same key lookup

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.18: Same key densification, eight threads

3.2 DENSIFIER 44

3.2.3.2 Unique-key densification:

We see a similar result for single-threaded as compared to same-key densification, however for unique

keys, Junction performs better than the Intel hash-map. Libcuckoo performs consistently better than the

Intel map for all number of threads. This is interesting, as for this example, there is no lock contention in

the Intel map, potentially due to the inherent nature of the hash-maps internals. This is most clear for the

single-threaded run, the performance of the Intel hash-map is almost half the speed of the Libcuckoo

map, and nearly 6 times slower than the std::vector.

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% new elements

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.19: Unique key densification, single thread

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% new elements

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.20: Unique key densification, two threads

3.2 DENSIFIER 45

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% new elements

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.21: Unique key densification, four threads

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

105

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:100% new elements

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.22: Unique key densification, eight threads

3.2.3.3 Random-key densification:

The differences between Libcuckoo and the Intel map are similar to the unique-key densification bench-

mark. Interestingly, Junction has improved performance as compared to the other maps for single- and

two-threaded runs.

3.2 DENSIFIER 46

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Random keys

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.23: Random key densification, sin-
gle thread

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

105

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Random keys

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.24: Random key densification, two threads

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

105

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Random keys

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.25: Random key densification, four threads

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

105

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Random keys

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.26: Random key densification, eight threads

3.2 DENSIFIER 47

3.2.3.4 High contention key densification:

In this benchmark, Intel’s map performs better than Libcuckoo. This is interesting, as lock contention is

regarded to be a major component to performance degradation, and this experiment is aimed to maximise

this. In fact, the Intel hash-map performs nearly 40% faster, we are currently un-aware for the root cause

for this.

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Maximum key creation contention

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.27: High contention key densifica-
tion, single thread

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Maximum key creation contention

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.28: High contention key densifica-
tion, two threads

3.3 DISJOINT SET 48

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Maximum key creation contention

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.29: High contention key densifica-
tion, four threads

0 20 40 60 80 100
Number of elements (millions)

101

102

103

104

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Maximum key creation contention

std::unordered_map
Junction
LibCuckoo
Intel TBB

FIGURE 3.30: High contention key densifica-
tion, eight threads

We observe a similar performance between the Intel and Libcuckoo maps, with the latter demonstrating

superior performance in the majority of benchmarks, especially for single-threaded runs. The current

implementation of the densification layer uses the Intel hash-map, due to some unresolved bugs in

integrating the Libcuckoo hash-map.

3.3 Disjoint Set

Union-find is a very efficient data-structure to partition a set of elements D into disjoint-sets. Initially, all

element reside in their own partition, i.e., equivalence classes which is also known as a singleton. The

disjoint-set data-structure provides three operations, i.e., make_set, union, and find. The operations

are performed on elements in the domain D. Note that in some implementations the domain D is not

necessarily bound.

3.3 DISJOINT SET 49

3.3.1 ADT

make_set(x): This operation creates a singleton for element x in the partitioning of set D, i.e., x resides

in its on disjoint set. For example, make_set applied on elements w, x, y, z in sequence produces

following partitionings of set D:

(1)

D : ∅ ⇒ make_set(w)⇒ D : {{w}}

(2)

D : {{w}} ⇒ make_set(x)⇒ D : {{w}, {x}}

(3)

D : {{w}, {x}} ⇒ make_set(y)⇒ D : {{w}, {x}, {y}}

(4)

D : {{w}, {x}, {y}} ⇒ make_set(z)⇒ D : {{w}, {x}, {y}, {z}}

union(x,y): Merges the two disjoint sets containing the elements x and y. Note if both elements reside

in the same disjoint set of the partitioning then the partitioning of the set D will not change after the

union-operation. For example, let’s assume a partitioning of D is {{w}, {x}, {y}, {z}}, observe the

following operations:

(1)

D : {{w}, {x}, {y}, {z}} ⇒ union(w,x)⇒ D : {{w, x}, {y}, {z}}

(2)

D : {{w, x}, {y}, {z}} ⇒ union(w,y)⇒ D : {{w, x, y}, {z}}

find(x): Retrieve the representative of a disjoint set in the partitioning. A disjoint set has exactly one

representative. Iff two elements in D have the same representative, they belong in the same disjoint

set. For example, assume a partitioning D : {{w, x, y}, {z}}. We choose following elements as the

representatives of the disjoint sets x is the representative of the disjoint set containing exactly w, x, y,

whilst z is the representative of its own set; singletons always are their own representative. So, for the

above partitioning, observe the following facts:

find(w) = find(x) = find(y)

3.3 DISJOINT SET 50

find(z) 6= find(x)

With the disjoint-set data-structure we can represent equivalence-relations implicitly. A disjoint set in the

partitioning forms a class in the equivalence relation. Assume that D = D1 ∪ ...D2 is a partitioning of

domain D, i.e., for all i, j where i 6= j , sets Di ∩Dj = ∅. An equivalence relation R ⊆ D ×D induces

a partitioning of D where the disjoint sets correspond to the equivalence classes of R, i.e.,

∀i : ∀a, b ∈ Di : a R b

The disjoint-set representation of an equivalence class is condensed. The worst-case space complexity

of an equivalence relation R is given by O(|D|2) assuming we store all possible pairs (a, b) ∈ R in

memory. This worst-case space complexity is tight in case if all elements in D relate to each other, i.e.,

∀a, b ∈ D : aRb. The best-case space complexity is O(|D|), if each element in R only relates to itself,

i.e., all equivalence classes in R form singletons.

However, by representing an equivalence relation by its equivalence classes and its induced partitioning on

the domain D, the space complexity is in the order of the number of elements in the domain, i.e., O(|D|).

Hence, the disjoint-set representation of an equivalence class is superior to an explicit representation

storing each pair separately.

An efficient implementation (Galler and Fisher, 1964) of disjoint sets utilises a collection of trees, each

representing a disjoint set to comprise a disjoint set forest; unioning elements would be performed by

joining trees, and the root of the tree can be considered to be the representative for that set. There are

several optimisations to achieve a near-constant amortised complexity.

The naïve approach for unioning a and b is to attach trees by drawing an edge from the root of b’s tree, to

a’s root, as demonstrated for an initial partitioning of D : {{w}, {x}, {y}, {z}},

y zw x

FIGURE
3.31: Pre-
union

y zw

x

FIGURE
3.32: After
union(w,x)

w

x y

z

FIGURE
3.33: After
union(w, y)

3.3 DISJOINT SET 51

This has a worst case tree height of n, considering the scenario wherein the larger tree is attached to a

new singleton repeatedly, leading to a O(n) cost for find(x).

a b c d

FIGURE
3.34: Pre-
union

a

b c d

FIGURE
3.35: After
union(b,a)

a

b

c d

FIGURE
3.36: After
union(c,
b)

a

b

c

d

FIGURE
3.37: After
union(d,
c)

By associating a value with each root that is the number of nodes in that root’s tree, union(x,y)

operations can be altered to always attach the smaller tree to the larger one. On a tie, one is selected

to be the leader, and the other attached. This results in a max height of blog2nc, thus find(x)

and union(x,y) operations are now logarithmic. [M.D.McIlroy] For the initial carrier set, D :

{{a}, {b}, {c}, {d}}, in Figures 3.38, 3.39, 3.40, 3.41, observe the result of the following operations to

the disjoint set forest. The value beside each node’s label is the corresponding weight of that subtree, i.e.

the number of nodes that are part of the subtree with the node as its root.

a:1 b:1 c:1 d:1

FIGURE
3.38: Pre-
union

a:1

b:2 c:1 d:1

FIGURE
3.39: After
union(b,a)

a:1

b:3

c:1

d:1

FIGURE
3.40: After
union(c,
b)

a:1

b:4

c:1 d:1

FIGURE
3.41: After
union(d,
c)

Furthermore, we can compress the paths as operations occur, such that they point to the resulting root.

The mechanism for doing so, is that as we traverse up from a node x in order to find the root, we keep

track of the root, and perform a second traversal, which then sets the parents of all nodes on that path

from x to its root to now point directly to the root.

3.3 DISJOINT SET 52

Path compression allows an even faster computational bound - instead of logarithmic, the union(x,y)

and find(x) operations have an amortised complexity of O(α(n)), where α(n) is the inverse Acker-

mann function - one that grows incredibly slowly (for n = 1080, α(n) ≤ 4).

In this case, instead of associating the size of the tree as a value to each root, we associate a value called

the rank, now defined as r(x) = h(x)− 1, h(x) being the height of the node x in the forest. This allows

us to store the rank in log2log2(n) bits, (Shannon, 1948) which proves useful later in concisely storing

the rank as described in Section 3.3.2.1.

For a given carrier set D : {{a}, {b}, {c}, {d}, {e}, {f}, {g}}, observe the following operations. The

value next to each node is now not the number of elements in that node’s subtree, but rather its rank.

a:0 b:0 c:0 d:0 e:0 f:0 g:0

FIGURE
3.42: Pre-
union

a:1

b:0

c:0 d:0 e:0 f:0 g:0

FIGURE
3.43: After
union(a,b)

a:1

b:0

c:0

d:0

e:0 f:0 g:0

FIGURE
3.44: After
union(b,d)

a:1

b:0 c:0d:0

e:1 f:0 g:0

FIGURE
3.45: After
union(e,c)

a:1

b:0 c:0d:0

e:1 f:1

g:0

FIGURE
3.46: After
union(f,g)

a:1

b:0 c:0d:0

e:2

f:1

g:0

FIGURE
3.47: After
union(e,f)

3.3 DISJOINT SET 53

a:1

b:0 c:0d:0

e:2

f:1g:0

FIGURE
3.48: After
find(g)

a:1

b:0

c:0d:0

e:2

f:1g:0

FIGURE
3.49: After
union(d,e)

a:1b:0 c:0d:0

e:2

f:1g:0

FIGURE
3.50: After
find(b)

Anderson’s 1991 wait-free parallel Union-Find data-structure (Anderson and Woll, 1991) provides a

simple design on which to base the Disjoint Set layer of our data-structure on. As an underlying machine

they provide one based on a Parallel Random-Access Machine (PRAM), which is a theoretical machine

model for parallel computations. PRAM as defined by Wyllie (Wyllie, 1979) consists of some unbounded

global memory (accessible and writable by all processors), an unbounded number of processors, and

some input plus a program both being finite in size. Each processor also has unbounded local memory, an

accumulator, a program counter, and a flag whether or not the processor is running; all exclusive, such

that a processor cannot write into another processor’s local memory. Anderson’s model represents all

instructions as atomic.

Anderson’s data-structure is wait-free such that each thread will take a finite number of steps to complete

- independent of other threads behaviour. Wait-free data-structures often require the use of primitives be-

yond simple atomic assignment. One such primitive that is required, is COMPARE-AND-SWAP(x,a,b),

as shown in Algorithm 12. This primitive is atomic, as dictated by Anderson’s model; x is set to b if

x = a.

Algorithm 12 Compare-and-swap primitive

1: procedure COMPARE-AND-SWAP(x, a, b)
2: if x = a then
3: x← b
4: return success
5: end if
6: return failure
7: end procedure

3.3 DISJOINT SET 54

Anderson’s data-structure uses an array A[1..n] for representing the partitioning of the carrier set

D = {1, . . . , n} assuming a fixed cardinality at the creation time of the data-structure. From now

on, we consider the array A[0, . . . , n− 1], to represent the carrier set D = {0, . . . , n− 1}, for ease of

representation in C++ .

However, in Datalog we need to cope with a monotonically growing carrier set. Hence, the carrier set is

initially an empty set which gets extended throughout its use.

To overcome the limitation of a fixed n in Anderson’s data-structure, we extend the interface with an

additional operation NEW-ELEMENT() that creates a new element in the carrier set; initially a singleton.

For this extension, we need to swap the static array in Anderson’s data-structure with a dynamically

increasing array called PiggyList. The PiggyList is an array that works with parallel threads accommo-

dating for concurrent capacity expansions, concurrent reads, and concurrent writes, each performing

well.

In the following, we provide an overview of Anderson’s parallel disjoint set data-structure with our

extensions. The operations are FIND(x), UNION(x,y), SAME-SET(x,y), NEW-ELEMENT().

NEW-ELEMENT() introduces a new singleton into the carrier-set; with regards to our disjoint-set forest

represented in A[0..n− 1], this element has rank 0, and is the root of its own tree.

Algorithm 13 Method to introduce a new element into the carrier set
1: procedure NEW-ELEMENT
2: new← number of elements currently in A
3: A[new]← CREATE-RECORD()
4: A[new].parent← new
5: A[new].rank← 0
6: end procedure

The operation FIND(x) shown in Algorithm 14 finds a path from the node x to its root node and returns

the root node as a representative of the disjoint set in which x resides in. As a side effect of finding the

path, all nodes along the path will be attached to the root node, i.e., collapsing the path. In a parallel

version, there may be an issue with a data race occuring while updating the parent node of an element.

This is prevented by the compare-and-swap operation that ensures that no other thread has changed

the parent node spuriously. This proves not to be an issue, as whether or not the compare-and-swap

succeeds, c-element stores its grandparent, thus c-element is always updated to an ancestor element in its

disjoint-set tree.

3.3 DISJOINT SET 55

Algorithm 14 Method to retrieve the representative for a given element

1: procedure FIND(x)
2: c-element← x
3: while c-element 6= A[c-element].parent do
4: parent-el← A[c-element].parent
5: . Attempt to update the current element’s parent to its grandparent
6: COMPARE-AND-SWAP(A[c-element].parent, parent-el,A[parent-el].parent)
7: c-element← A[parent-el].parent
8: end while
9: return c-element

10: end procedure

The operation SAME-SET(x,y), described in Algorithm 15, is a predicate that holds, if the ele-

ments x and y reside in the same disjoint set; otherwise the predicate fails. The implementation of

SAME-SET(x,y) uses the operation FIND for its implementation. First, it determines the representa-

tives of x and y respectively. If they coincide, we return true. However, a concurrent thread may change

the forest. To check this case, on line 8 we check whether x’s found rep after the find is still its own

representative. If this is the case, the SAME-SET(x,y) predicate fails. In all the other cases, we have

detected contention and we restart the operation again.

Algorithm 15 Predicate to test whether two elements are within the same disjoint set

1: procedure SAME-SET(x,y)
2: restart:
3: xrep← FIND(x)
4: yrep← FIND(y)
5: if xrep = yrep then
6: return true
7: end if
8: if A[xrep].parent = xrep then
9: return false

10: end if
11: go to restart
12: end procedure

The operation UNION(x,y) merges the disjoint sets of elements x and y, as demonstrated in Algorithm

16. We have several cases. First, if the two elements reside in the same disjoint set, i.e., the representatives

are the same, no updates of the data-structure are performed. Second, if the two elements reside in

different disjoint sets, the trees of both disjoint sets are merged. The merge order is dictated by the rank,

in that we attach the representative with a smaller rank to the other. In the case of a tie, we still attach the

two, however we increment the rank of the second, yrep.

3.3 DISJOINT SET 56

Algorithm 16 Method to merge two element’s disjoint sets

1: procedure UNION(x,y)
2: restart:
3: xrep← FIND(x)
4: yrep← FIND(y)
5: if xrep = yrep then
6: return
7: end if
8: xreprank← A[xrep].rank
9: yreprank← A[yrep].rank

10: if xreprank > yreprank or (xreprank = yreprank and repx > repy) then
11: SWAP(xrep,yrep)
12: SWAP(xreprank, yreprank)
13: end if
14: if UPDATE-ROOT(xrep, xreprank, yrep, yreprank) = failure then
15: go to restart
16: end if
17: if xreprank = yreprank then
18: UPDATE-ROOT(yrep, yreprank, yrep, yreprank + 1)
19: end if
20: end procedure

Used in the above methods, UPDATE-ROOT(x, oldrank, y, newrank) is a helper function,

defined in Algorithm 17. Its behaviour is to set x’s parent to be y, with a new rank of newrank. This is

only done if x is a root node (i.e. its parent is itself), and x’s record has not been concurrently modified

since (this is performed by the COMPARE-AND-SWAP).

Algorithm 17 Wait-free method to update a tree root of the disjoint set forest

1: procedure UPDATE-ROOT(x, oldrank, y, newrank)
2: old← A[x]
3: if old.parent 6= x or old.rank 6= oldrank then
4: return failure
5: end if
6: new← CREATE-RECORD()
7: new.parent← y
8: new.rank← newrank
9: return COMPARE-AND-SWAP(x, old, new)

10: end procedure

SAME-SET and UNION both have loops within their function bodies (jumps to restart:), and are

affected by other threads’ behaviour. Interestingly, this behaviour seems contradictory to the wait-free

claim put forth by Anderson. The case can be made that they in fact will terminate in a finite number of

steps, as whilst they may loop, progress is always made in each loop, so perpetutity requires continous

introduction of elements. In Anderson’s case, they fix the cardinality to a n, known ahead of time, so

3.3 DISJOINT SET 57

the number of elements are fixed, and thus there are a finite number of function calls that will cause

contention.

For SAME-SET and UNION, this may only happen if during each loop, the height of the disjoint-set tree

gains a new root right before checking each iteration. In UNION this must occur somewhere between line

4 and line 14, and for SAME-SET it must happen between line 4 and line 8. For a new root to appear

ahead of the found root, the disjoint-set tree currently being operated on must be attached to another,

which only occurs if the rank of the other disjoint-set tree is greater than or equal to the current disjoint-set

tree. For a larger rank to occur, the other tree must have at least the same number of elements within. As

this must occur every loop, this mandates that the size of the current disjoint-set tree will double, due to

the attachments.

We construct a similar argument to Anderson, that despite our added capability to insert new elements, the

number of elements to be added is externally bound - Datalog only deals with finite domains (Abiteboul

et al., 1995), and as such proves our extension upholds the wait-free property of Anderson’s original

data-structure for our use case.

3.3.2 Implementation

Anderson’s description of the data-structure is based on PRAM, and thus requires modification for a

C++ implementation. Introduced in C++11 is a standardised memory model, simplifying the implemen-

tation, yet still requiring synchronisation primitives to ensure intended memory consistency (Various,

2018).

Notably, in order to have reasonable performant atomic operations as required by the COMPARE-AND-SWAP

primitive, we require the records to be at most 8 bytes. SOUFFLÉ currently supports 64bit machines, so

larger records sizes, such as 16 bytes, require SSE instructions, which cannot be performed atomically

without a significant performance hit, visualised in Figure 3.54. We require specialised encoding of these

records to accommodate this, whilst also obeying storage requirements.

As previously mentioned, to support arbitrary sized carrier-sets, as they are not known ahead of time, we

also make use of a data-structure called PiggyList.

3.3 DISJOINT SET 58

3.3.2.1 Element Representation

We store our elements in a similar fashion that is described in Anderson’s model. Elements are stored in

an array, with each index holding a record that contains two fields, parent and rank. The value of the

index represents the element’s identifier, in Figure 3.51, 1 is the name and value of the element stored in

index 1.

FIGURE 3.51: packed value of an element resident in index 1

The parent field stores the index of the element that has this element as a child, whilst rank stores the

quasi-height of the element; disjoint-set forests undergo path compression, so this value is an over-

approximation of the actual height. The array representation shown in Figure 3.52 corresponds to the

disjoint-set forest as represented in Figure 3.53. A possible series of operations to have led to this state is

ADD-ELEMENT(), ADD-ELEMENT(), UNION(0,1), ADD-ELEMENT().

FIGURE 3.52: Array representa-
tion of packed values

FIGURE 3.53: Equivalent disjoint-
set forest

In our C++ implementation, the representation of the record was stored entirely in a 64 bit unsigned

integer. We provide the following C++ type definitions.

1 typedef uint8_t rank_t; /* rank */

2 typedef uint64_t parent_t; /* parent */

3.3 DISJOINT SET 59

3 typedef uint64_t block_t; /* record of both rank, parent */

4

5 // number of bits that the rank is

6 constexpr uint8_t split_size = 8u;

7 // block_t & rank_mask extracts the rank

8 constexpr block_t rank_mask = (1ul << split_size) - 1;

To pack and unpack the values to and from the record respectively, the following functions are specified.

b2p(block) retrieves the parent encoded in block, b2r(block) retrieves the rank encoded in

block, and pr2b(parent,rank) packs parent into the upper 56 bits and rank into the lower 8

bits and returns the resulting block_t.

1 static inline parent_t b2p(const block_t inblock) {

2 return (parent_t)(inblock >> split_size);

3 };

4

5 static inline rank_t b2r(const block_t inblock) {

6 return (rank_t)(inblock & rank_mask);

7 };

8

9 static inline block_t pr2b(const parent_t parent, const rank_t rank) {

10 return (((block_t)parent) << split_size) | rank;

11 };

We restrict the record size for each element to 64 bits in order to avoid the performance penalty associated

with non-native atomics. SOUFFLÉ is targeted at modern 64 bit Intel processors, which do not have

performant 128 bit atomics, libatomic must be added as a dependency if 128 bit atomics are to be used.

The graph in Figure 3.54 demonstrates the runtime disparity, for varyingN as set by the micro-benchmark

briefly described in Snippet 3.7. In Figure 3.54 both 32 and 64 bit atomics have the same runtime (shown

overlaid), whereas 128 bit atomics are approximately 3 times slower for a million elements.

LISTING 3.7: Atomic performance benchmark

1 /* time the duration to store N 128 bit plain old data types*/

2 struct X128 { uint64_t a; uint64_t b; };

3.3 DISJOINT SET 60

3 std::atomic<X128> x128;

4 for (size_t i = 0; i < N; ++i) x128.store(X128{i,i});

5

6 /* time the duration to store N 64 bit plain old data types*/

7 struct X64 { uint32_t a; uint32_t b; };

8 std::atomic<X64> x64;

9 for (size_t i = 0; i < N; ++i)

x64.store(X64{static_cast<uint32_t>(i),static_cast<uint32_t>(i)});

10

11 /* time the duration to store N 32 bit plain old data types*/

12 struct X32 { uint16_t a; uint16_t b; };

13 std::atomic<X32> x32;

14 for (size_t i = 0; i < N; ++i)

x32.store(X32{static_cast<uint16_t>(i),static_cast<uint16_t>(i)});

0.01 0.20 0.40 0.60 0.80 1.001.00
Number of insertions 1e7

0

50

100

150

200

250

300

Ti
m

e
(m

s)

16 byte atomic
8 byte atomic
4 byte atomic

FIGURE 3.54: Store performance of various-sized atomic datatypes

By restricting ourselves to 64 bits to store both the rank and parent, we must assert that this is sufficient.

From the result in Section 3.3.1, we see that log2log2(n) bits are necessary to store the rank. For 264

elements, we require log2log2(264) = 6 bits, although we round this up to 8 bits, to avoid necessitating

sub-byte masking operations during every use of the rank field. Storing it in a byte is the logical

3.3 DISJOINT SET 61

minimum required, natively supported as a single data-type in C++ as uint8_t; leaving 56 bits to store

the parent field. Practical limits will be hit far before reaching 256 elements in any data-structure,

especially so in SOUFFLÉ - currently not all data-structures fully support 64bit data-types, so 56 bits is

sufficient.

3.3.2.2 C++

C++11 formalised a standard memory-model, which we used as necessary to emulate the PRAM model

as used by Anderson’s disjoint-set data-structure. The PRAM model assumes all writes are atomic, and

that modifications to global memory is visible instantly, whilst in C++ memory may become set to an

invalid state when two threads attempt to update the same value simultaneously.

To overcome this atomic types may be used, although these suffer a performance penalty. Atomic types

cannot be moved or copied in the C++11 context, this prevents their use in any data-structure this - such

as a std::vector, or a std::map, and as such, pointers are often used to enable their storage. In

our data-structure, we do not need to worry about this, as PiggyList never copies (nor moves) data, it

guarantees that an elements will always be in the same location over the entire lifetime of the PiggyList.

Atomic types guarantee that modifications to the underlying data will not be lost. For the following

program, if increment is called by two threads concurrently, it is possible that the resulting value

of counter does not equal the number of invocations. On the other hand, aCounter carries that

guarantee.

1 size_t counter = 0;

2 std::atomic<size_t> aCounter{0};

3

4 void increment() {

5 counter += 1; // equivalent to x = fetch(counter), counter = x + 1;

Two operations.

6 }

7

8 void atomicIncrement() {

9 aCounter.fetch_add(1) // atomically increment

10 }

3.3 DISJOINT SET 62

The memory ordering of atomics by default enforces sequential consistency, which dictates that for any

marked atomic operations, concurrent operations performed on them is equivalent to some sequential

ordering. We do not require the strong guarantee of sequential consistency - the strongest memory order

specified by the C++11 standard (Boehm and Adve, 2008) - instead we can relax to acquire and release

semantics. All these enforce are happens before and happens after ordering relationships for operations

on the same data. x86 architectures do not require special instructions for these acquire and release

orderings, as the architecture is designed with a strong ordering in mind. (McKenney, 2005)

The COMPARE-AND-SWAP operations have an equivalent primitive in C++11 , as a member function for

all atomic types. x.compare_exchange_strong(T& a, T b and x.compare_exchange_-

weak(T& a, T b) both atomically set x to b iff x = a, although the weak function is allowed to

fail spuriously.

The function signatures for the equivalent C++ disjoint-set operations are necessary to carry type defi-

nitions. As follows are the function declarations for FIND, UPDATE-ROOT, SAME-SET, UNION, and

NEW-ELEMENT. Note that makeNode() returns a packed value for the newly created singleton.

1 parent_t findElement(parent_t x);

2 bool updateRoot(const parent_t x,

3 const rank_t oldrank,

4 const parent_t y,

5 const rank_t newrank);

6 bool sameSet(parent_t x, parent_t y);

7 void unionNodes(parent_t x, parent_t y);

8 block_t makeNode();

3.3.3 PiggyList

Named due to the expanding nature of the data-structure, this is a new implementation and design of a

concurrent vector. As SOUFFLÉ deals with monotonically increasing data-structures (i.e. they are only

growing) except for clearing all elements, this allowed for a simpler, and more efficient data-structure.

Despite this, the data-structure can easily be modified to allow deletion, and also be lock-free. For

simplicity, the SOUFFLÉ implementation does not use these extensions.

3.3 DISJOINT SET 63

The requirements of the wait-free Union-Find implementation, is that on contention it retries, requiring

repeated find(u) calls that in turn necessitate random access to the storage container (i.e. access an

element at index i), in order to perform path compression. A std::vector is ill-suited to this task, as

concurrent writes or element creation that require expansion of the container capacity are not thread-safe.

A linked-list never changes the location of elements and as such can accommodate concurrent writes

and element creation; although the data-structure has poor random-lookup performance, but this can be

abated by increasing the number of elements stored in each node of the linked list. By storing say 10000,

elements within each node, the number of traversals required to be performed is cut down by a factor of

10000. Unfortunately, this is insufficient and still proves to be a bottleneck - using a larger number again

helps, although at a significant memory overhead for smaller lists. Figure 3.55 details what we will call

Blocklist, with chunk size k, also showing indexes 0, . . . , k + 2 containing elements.

FIGURE 3.55: Basic chunked-linked-list that has an access bottleneck

To address this shortcoming, the initial container size can be small (given as r), and future nodes in the

linked list use a size that is double the previous node’s size (i.e. 2r, then 4r, and so on), to which elements

can be inserted into. Starting with a container size of 1, the series of sizes per resize is 1, 3, 7, 15, ..., 2n−1.

Clearly, in a 64 bit system, no more than 64 nodes in our linked list will ever be required, which allows a

64 element long lookup-table, such that iteration is no-longer necessary.

Notably, this requires logarithms to identify which node a given index is, and would at first glance require

O(logn) time. Fortunately, the integer logarithm base 2 can be done in a constant number of CPU

cycles through the help of the gcc intrinsic __builtin_clzll (which counts the leading number

of bits, subtract this from 64 (for 8 byte unsigned integers) to get the index in the lookup-table), or if

not-compiling on gcc, the x86_64 instruction BSR performs the same operation.

For sections of SOUFFLÉ that are expected to always store a larger series of elements, a bigger initial

allocated block size can be used, as is in SOUFFLÉ , the default is an initial blocksize of 65535.

As previously mentioned, PiggyList does not move or copy any data. For the locking version, described

in Section 3.3.3.1, it is not required to keep around the old versions so as to allow copying over to the

3.3 DISJOINT SET 64

FIGURE 3.56: PiggyList with initial block size of 1; four elements have been created

new, larger container - strictly by design. This allows less memory overhead as compared to say, a

std::vector.

3.3.3.1 Implementation & Interface

The implementation of the basic PiggyList requires the use of locks. Note that the value modifications

are all performed atomically.

Algorithm 18 Appending an element to PiggyList

1: procedure APPEND(element)
2: index← piggylist.size.fetch_add(1)
3: if piggylist.container_size < index + 1 then . If this element’s location doesn’t exist
4: piggylist.mutex.lock()
5: while piggylist.container_size < index + 1 do . Double-checked lock
6: . Allocate the next block into the lookup-table
7: piggylist.blocks[piggylist.num_containers] = new block(2piggylist.num_containers)
8: . The next allocated block will be twice as big
9: piggylist.container_size += 2piggylist.num_containers

10: piggylist.num_containers++
11: end while
12: piggylist.mutex.unlock()
13: end if
14: . Set the element at its allocated index
15: piggylist.blocks[blog2 index + 1c][index− (2blog2 index+1c − 1)] = element
16: end procedure

3.3 DISJOINT SET 65

Algorithm 19 Retrieve an element in a PiggyList

1: procedure GET(index)
2: return piggylist.blocks[blog2 index + 1c][index− (2blog2 index+1c − 1)]
3: end procedure

As PiggyList has the concept of indexes, iteration is trivial. An iterator can be constructed with its

beginning at index 0, and terminating after index size− 1. A reverse iterator can be similarly constructed,

with its initial index at size− 1, terminating after reaching index 0.

3.3.3.2 Additional Features

Element deletion. As previously mentioned, PiggyList can be implemented to accommodate deletion.

In order to do so, a thread-safe linked list is also required, in order to store “deleted” elements’ indexes

(denoted in the following code as deleted_nodes). On element creation, if the linked-list is non-empty the

current thread will attempt to pop from the linked-list, and if successful, the element will be inserted at the

retrieved index, otherwise the element will be stored in the next available index (expanding if necessary).

Algorithm 20 Creating an element in a deletion enabled PiggyList

1: procedure APPEND(element)
2: index← piggylist.deleted_nodes.pop()
3: if index then . Check if there is a deleted element to re-use
4: . Set the element at its allocated index
5: piggylist.blocks[blog2 index + 1c][index− (2blog2 index+1c − 1)] = element
6: else
7: index← piggylist.size.fetch_add(1)
8: if piggylist.container_size < index + 1 then . If this element’s location doesn’t exist
9: piggylist.mutex.lock()

10: while piggylist.container_size < index + 1 do . Double-checked lock
11: . Allocate the next block into the lookup-table
12: piggylist.blocks[piggylist.num_containers] = new block(2piggylist.num_containers)
13: . The next allocated block will be twice as big
14: piggylist.container_size += 2piggylist.num_containers

15: piggylist.num_containers++
16: end while
17: piggylist.mutex.unlock()
18: end if
19: . Set the element at its allocated index
20: piggylist.blocks[blog2 index + 1c][index− (2blog2 index+1c − 1)] = element
21: end if
22: end procedure

3.3 DISJOINT SET 66

To delete an element, the element can be destroyed at that index, and then the index is pushed onto the

linked-list.

Algorithm 21 Deleting an element

1: procedure REMOVE(index)
2: cleanup element at index
3: . signal that this index can be re-used
4: piggylist.deleted_nodes.push(index)
5: end procedure

The Figures 3.57, 3.58, 3.59, 3.60 show the resulting state during the sequence of deletions: delete(3),

delete(0), delete(4).

0 1 2 3 4 5 6
PiggyList:

Deletion Queue:

FIGURE 3.57: Starting PiggyList
- occupied elements are labelled in
green, unused in white

0 1 2 3 4 5 6
PiggyList:

Deletion Queue:

3

FIGURE 3.58: PiggyList after in-
dex 3 has been deleted. Red is used
to mark deleted elements

0 1 2 3 4 5 6
PiggyList:

Deletion Queue:

3 0

FIGURE 3.59: PiggyList after in-
dex 0 has been deleted

0 1 2 3 4 5 6
PiggyList:

Deletion Queue:

3 0 4

FIGURE 3.60: PiggyList after in-
dex 4 has been deleted

3.3 DISJOINT SET 67

The next append operation will write into the first dequeued element from the front of the queue, in this

case writing into index 3.

In order to reclaim space, the following non-thread-safe procedure may be used - this runs in O(m+ n)

time, where m is the number of deleted elements, and n is the number of total elements in the data-

structure. If space reclaimation is not performed prior to iteration, it is necessary to insert tombstone or

markers for deleted elements, such that they can be skipped when reached.

Algorithm 22 Reclaiming space

1: procedure SHRINK(piggylist)
2: final← index of the last element in the piggylist
3: for each e ∈ deleted queue do
4: . Only move elements towards the start of the list
5: if e < final then
6: move element at final into the index of e
7: scan final back to point to the now-last element
8: end if
9: end for

10: remove blocks without elements
11: end procedure

As follows is a pictorial representation of the trimming procedure, for the initial state as seen in Figure

3.61 which has elements at indices 1,4,5 already deleted.

0 1 2 3 4 5 6

4 1 5

final

FIGURE 3.61: Starting PiggyList
- the final used index is 6

0 1 2 3 4 5 6

1 5

final

FIGURE 3.62: The element at in-
dex 6 is moved to index 4, final
advances to the last element (4)

3.3 DISJOINT SET 68

0 1 2 3 4 5 6

5

final

FIGURE 3.63: The element at in-
dex 4 is moved to index 1, final
advances to index 3

0 1 2 3 4 5 6

final

FIGURE 3.64: Index 5 is after the
final index, so no elements are
moved. We terminate as there is
no more elements in the deletion
queue

Wait-free. For a data-structure to carry the wait-free guarantee, each thread operating on the data-

structure must be able to finish in a finite number of steps, independent on the other threads’ operations.

PiggyList can carry this guarantee, albeit with concessions in its worst-case space complexity. This can

be abated by an extension, although this requires tuning to reduce contention as much as possible.

In order to be wait-free, the spin-locks that are used in container resizing must be replaced. When the

requested index is larger than the current container size, a compare-and-swap operation is performed on

the index of the lookup-table where the new segment would be placed. As follows is the pseudocode of

the makeNode() function.

Unfortunately, when many threads attempt to expand the container size at the same time, many container-

blocks will be allocated at the same time, which require deletion for the resulting failed threads. Worst-case

space complexity in this scenario is now O(nt), with t denoting the number of threads. Empirical data

of a small benchmark indicates this is not a rare occurrence, appearing to have a memory overhead of

approximately that of the worst case nt, as demonstrated in Figure 3.65. It is important to keep in mind

that instrumenting this memory usage undoubtedly increased the likelihood that a thread allocates memory

whilst another is currently in between allocating memory and attempting to mark it as authoritative. A

more accurate result may potentially be obtained by emulation, although this also carries complications.

3.3 DISJOINT SET 69

Algorithm 23 Creating an element in a wait-free PiggyList

1: procedure APPEND(piggylist, element)
2: index← piggylist.size.fetch_add(1)
3: block_index← blog2(index+1)c
4: if piggylist.blocks[block_index] is null then . Not allocated
5: new_block← new block(2 block_index)
6: . Try set allocated block if not already set
7: if COMPARE-AND-SWAP(piggylist.blocks[block_index], null, new_block) = failure then
8: clean up new_block
9: end if

10: end if
11: . Set the element at its allocated index
12: piggylist.blocks[block_index][index− (2block_index − 1)] = element
13: end procedure

0.0 0.2 0.4 0.6 0.8 1.0
number inserted 1e9

0.0

0.2

0.4

0.6

0.8

nu
m

be
re

le
m

en
ts

al
lo

ca
te

d

1e10

FIGURE 3.65: Memory consumption for a multithreaded insertion benchmark. The
number of threads in this test is 16.

In order to reduce the chances of this occurring, a weighted dice-throw is conducted per element-creation

that approaches 100% probability as the current container fills up. On a successful roll, the next container

size is allocated, still using the lock-free resizing algorithm. Note that the probability is weighted such

that it is not possible to allocate a new container that is not the current storing container’s successor -

i.e. if the current container is being added to, and a thread successfully rolls to create another container,

although the next one has already been reserved, that thread will not create it.

3.3 DISJOINT SET 70

Algorithm 24 Creating an element in a wait-free PiggyList

1: procedure APPEND(piggylist, element)
2: index← piggylist.size.fetch_add(1)
3: block_index← blog2(index+1)c
4: if piggylist.blocks[block_index + 1] is null then . Next block free
5: remaining← number of elements not occupied in this block
6: if ROLL-DICE(remaining, 2block_index, t) then
7: new_block← new block(2 block_index+1)
8: . Try set allocated block if not already set
9: if COMPARE-AND-SWAP(piggylist.blocks[block_index+1], null, new_block) = failure

then
10: clean up new_block
11: end if
12: end if
13: end if
14: . Set the element at its allocated index, we assume current block is allocated
15: piggylist.blocks[block_index][index− (2block_index − 1)] = element
16: end procedure

The follwing dice roll predicate dice-roll provides a linear probability curve (visualised in Figure

3.66), in that as the current block fills up, the probability that a thread’s dice-roll will succeed also

increases. We coerce a guarantee that the threads must allocate if only t spaces are left in the container -

this ensures that all threads can assume that their current block_index will be writeable, as there is no

code-execution path for each thread that will allow no next block to be allocated, assuming t is known

ahead of time.

Algorithm 25 Dice roll predicate, if a thread should try to allocate a new block

1: procedure DICE-ROLL(remaining, blocksize, thread_count)
2: . This ensures a thread’s index’s block always exists
3: if remaining ≤ thread_count then
4: return true
5: end if
6: return RAND([0, 1]) ≥ remaining

blocksize
7: end procedure

3.3 DISJOINT SET 71

% occupied

probability

0 100%

1

0

t

FIGURE 3.66: Probability graph of the linear dice roll function, the last t threads are
guaranteed to succeed

For the current dice-roll function, the probability of two nodes creating a new container at the same time

is dependent on many factors. For one, instructions may not necessarily take the same number of steps to

complete, and even the same instruction may be slower or faster depending on the calling context, the

scheduler, and other factors. If we try to assume that the threads will attempt to roll the dice at the same

time (which would seem to be a likely scenario for duplicate memory consumption), even if only one

thread succeeds, the thread may spend an arbitrary amount of time in the allocation block (i.e. within

the body of the roll-dice conditional), and so other threads may have ample opportunities to retry the

roll-dice functions on subsequent calls. Due to this, it is non-trivial to analyse complexity - even if it is

attempted, the number of assumptions may make it unrepresentative of real-world performance. Empirical

studies of probabilistic functions have proven sufficient in the literature of constructing concurrent data-

structures.(Gibson and Gramoli, 2015) It is worth noting that the worst-case space complexity is still

O(nt).

For this dice-roll predicate, the number of threads is known ahead of time as t. If for an application this is

not known, a modified probability function can ignore t, and instead in the append(e) function, an

additional check of the current block’s existence is necessary. For ease of space complexity evaluation,

the algorithm described in Algorithm 24 suffices.

An experiment into the space complexity of the probabilistic allocation approach using the linear

probability function defined above is presented in Figure 3.67. Spurious allocations of 2 or 3x are

3.3 DISJOINT SET 72

observed - a marked improvement over the ≈16x overhead of the non-probabilistic wait-free approach.

As we see in Section 3.3.4, this overhead is similar to that of a typical std::vector.

0.0 0.2 0.4 0.6 0.8 1.0
number inserted 1e9

0.0

0.5

1.0

1.5

2.0

nu
m

be
re

le
m

en
ts

al
lo

ca
te

d

1e9

FIGURE 3.67: Space consumption of a uniform probability Wait-free PiggyList

3.3.4 Disjoint Set and PiggyList Benchmarks

In order to measure the difference in utility of the different data-structures, a variety of scenarios will be

performed on the disjoint-set each using the different underlying data-structures. We only test the locking

versions without deletion, as the extensions are currently not required as part of the overall data-structure.

We measure the performance of the disjoint-set on several operations:

• Read heavy, minimal write (N − 1 consumers, 1 producer)

• Equal reading/writing (N/2 consumers, N/2 producers)

• Write heavy, minimal read (N − 1 producers, 1 consumer)

The following benchmarks were performed on a 8 Threaded machine with a Intel(R) Core(TM) i7-7700K

CPU @ 4.20GHz CPU.

Each thread operates on the same number of elements, disjoint from each other. In Snippet 3.8, the

consumer performs read-only tests whether elements are within the same disjoint set. This is read-only

3.3 DISJOINT SET 73

in the sense that the no path compression is performed, so no fields of the shared container are written

to. Snippet 3.9 shows the equivalence producer thread - it simply unions elements to be in the same set.

We union such that a large number of elements will be touched and have their fields updated. For the

consumer/producer tests, we run all of these over 8 threads.

LISTING 3.8: Consumer Pseudocode

1 void consume(size_t operations) {

2 for (size_t i = 1; i <

operations; ++i) {

3 disjointSet.readOnlySameSet(i,

i-1);

4 }

5 }

LISTING 3.9: Producer Pseudocode

1 void produce(size_t operations) {

2 for (size_t i = 0; i <

operations; ++i) {

3 disjointSet.unionNodes(i,

i/2);

4 }

5 }

We graph the total timings of the operations for an 8 threaded run (N=8).

Read heavy operations appear to scale better for PiggyList compared to the BlockList, beating the

runtime after around 2 million operations. The BlockList has block-size 10000 - if that is increased,

we observed that if this increases, the runtime only slightly improves. Looking at equal consumers and

producers shows that the BlockList scales much more poorly. The runtime of the std::vector is

magnitudes slower than either the BlockList or PiggyList. This trend is continued throughout rest of

these benchmarks.

3.3 DISJOINT SET 74

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

100

101

102

R
un

ni
ng

Ti
m

e
(m

s)
Total Time:N-1 Consumers, 1 Producer

std::vector
BlockList
PiggyList

FIGURE 3.68: Runtime for read heavy concurrent operations

As the number of writers increases the performance of the BlockList degrades drastically, while the

performance of PiggyList slightly decreases.

3.3 DISJOINT SET 75

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)
Total Time:N/2 Consumers, N/2 Producers

std::vector
BlockList
PiggyList

FIGURE 3.69: Runtime for equal read/write heavy concurrent operations

For a large number of writers, the BlockList appears to perform better than the PiggyList, however after

around 1.3 million elements, the PiggyList supercedes.

3.3 DISJOINT SET 76

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)
Total Time:1 Consumer, N-1 Producers

std::vector
BlockList
PiggyList

FIGURE 3.70: Runtime for write heavy concurrent operations

It is clear that the std::vector is vastly outclassed by the less-locking data-structures. In the following

graphs we breakdown the mean runtime for each producer and consumer, highlighting the consequential

interaction between different loads.

For the single producer benchmark, we see that the total runtime of the producing thread dominates

for PiggyList, whose performance only supersedes the equivalent BlockList producer after 2.3 million

elements. For the std::vector, both the producer and consumer threads have similar durations.

3.3 DISJOINT SET 77

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

10−1

100

101

102

R
un

ni
ng

Ti
m

e
(m

s)
Time Breakdown:N-1 Consumers, 1 Producer

std::vector Consumer
std::vector Producer
BlockList Consumer
BlockList Producer
PiggyList Consumer
PiggyList Producer

FIGURE 3.71: Mean Producer/Consumer runtime for read heavy concurrent operations

As the number of producers increase, the BlockList consumer threads seriously degrade in performance,

consistently ranking slower than the producer thread. We see the similar reversing trend in PiggyList,

where the producers rank faster than the consumer threads.

3.3 DISJOINT SET 78

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

10−1

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)
Time Breakdown:N/2 Consumers, N/2 Producers

std::vector Consumer
std::vector Producer
BlockList Consumer
BlockList Producer
PiggyList Consumer
PiggyList Producer

FIGURE 3.72: Mean Producer/Consumer runtime for equal read/write heavy concurrent operations

For the maximum number of producers, we see that the performance of the two operations are almost

identical between all data-structures.

3.3 DISJOINT SET 79

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)
Time Breakdown:1 Consumer, N-1 Producers

std::vector Consumer
std::vector Producer
BlockList Consumer
BlockList Producer
PiggyList Consumer
PiggyList Producer

FIGURE 3.73: Mean Producer/Consumer runtime for write heavy concurrent operations

This demonstrates that the PiggyList has vastly better asymptotic complexity, however for small numbers

of operations, the BlockList mostly outperforms. We see this to not be the case for threaded element

creation - an often called operation during SOUFFLÉ operation.

In the following graphs we observe BlockList to consistently exhibit extremely poor performance for

all thread counts - it is outperformed by std::vector protected by a lock. Interestingly, we don’t

see a linear speed-up for PiggyList, even for large number of elements. We suspect this is due to the

highly contended atomic variable, which due to the x86 memory model, requires a relatively high level of

synchronisation between threads - even if requested to operate with a relaxed memory model as would be

possible with the PiggyList size variable.

3.3 DISJOINT SET 80

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Element Creation (1 thread)

std::vector
BlockList
PiggyList

FIGURE 3.74: 1 Thread Insertion

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Element Creation (2 threads)

std::vector
BlockList
PiggyList

FIGURE 3.75: 2 Threaded Parallel Insertion

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Element Creation (4 threads)

std::vector
BlockList
PiggyList

FIGURE 3.76: 4 Threaded Parallel Insertion

0 500 1000 1500 2000 2500 3000 3500 4000
Number of elements (thousands)

101

102

103

R
un

ni
ng

Ti
m

e
(m

s)

Total Time:Element Creation (8 threads)

std::vector
BlockList
PiggyList

FIGURE 3.77: 8 Threaded Parallel Thread In-
sertion

The worst case memory consumption for the Locking PiggyList with deletion is the maximum number of

elements stored at once - even if the elements are removed one-by-one, as there is no de-allocation of

reserved blocks (unless shrinking is performed). As mentioned above, the wait-free PiggyList (with or

3.3 DISJOINT SET 81

without deletion) may use at most O(nt) space, in the scenario that all t threads attempt to allocate more

space, of which t− 1 threads later delete.

0.0 0.2 0.4 0.6 0.8 1.0
Number of elements (billions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
um

be
ro

fe
le

m
en

ts
al

lo
ca

te
d

(b
ill

io
ns

)

Memory consumption of std::vector

FIGURE 3.78: Memory consumption of a std::vector as elements are inserted

It is interesting to compare the performance of the probabilistic wait-free PiggyList to a standard

std::vector. In Figure 3.78, we see similar memory overhead for the STL container, as compared to

the probabilistic wait-free PiggyList in practice in Figure 3.67. The locking PiggyList’s memory overhead

is tight, with no ‘spiked’-overhead when the container expands, shown in Figure 3.79. It is important to

note however, that this spiking is only consistently always observed within std::vector for when

non-trivially copyable objects are stored within the container. For trivially copyable types a realloc

will be attempted, so that if possible, the container is resized in-place, and no overhead will be seen (in

addition to not requiring copies of the objects stored). It is not simple to benchmark this, and it varies

wildly depending on the available RAM on the computer, the operating system, and the address space

variations induced by ASLR.

3.3 DISJOINT SET 82

0.0 0.2 0.4 0.6 0.8 1.0
Number of elements (billions)

0.0

0.2

0.4

0.6

0.8

1.0
N

um
be

ro
fe

le
m

en
ts

al
lo

ca
te

d
(b

ill
io

ns
)

Memory consumption of PiggyList (locking version)

FIGURE 3.79: Memory consumption of a Locking PiggyList as elements are inserted

Single-threaded append performance: due to the lack of copying objects on resize, the PiggyList

will sometimes outperform a contiguous std::vector depending on the size of the data stored. In

the following benchmarks (Figures 3.80, 3.81, 3.82, 3.83) we measure the comparative performance of

std::vector::push_back and a modified PiggyList::append optimised for single-threaded

usage.

3.3 DISJOINT SET 83

0 10 20 30 40 50
Number inserted (millions)

0

100

200

300

400

Ti
m

e
(m

s)

PiggyList
std::vector

FIGURE 3.80: 8 bit (uint8_t)
append performance

0 10 20 30 40 50
Number inserted (millions)

0

100

200

300

400

Ti
m

e
(m

s)

PiggyList
std::vector

FIGURE 3.81: 16 bit (uint16_-
t) append performance

0 10 20 30 40 50
Number inserted (millions)

0

100

200

300

400

Ti
m

e
(m

s)

PiggyList
std::vector

FIGURE 3.82: 32 bit (uint32_-
t) append performance

0 10 20 30 40 50
Number inserted (millions)

0

100

200

300

400

Ti
m

e
(m

s)

PiggyList
std::vector

FIGURE 3.83: 64 bit (uint64_-
t) append performance

For 16 bit data-types and above, we observe an improvement in append performance. The benefit in 16

bits is marginal, for 32 bit a std::vector is just under 50% slower, and for 64 bit the std::vector

is just over half the speed of the PiggyList.

Whilst this tests only primitives, PiggyList also demonstrates improved performance for storing objects

that have costly move- or copy-constructors. PiggyList also has the benefit of being allowed to store non-

copyable or non-moveable types, such as std::atomic. In order to store these in a STL container, a

3.3 DISJOINT SET 84

pointer instead must be stored. This proves expensive as these would all require separate and independent

allocation, in addition to the allocation of new elements as the container expands. This is only applicable

to PiggyList implementations that do not perform node deletion, as supporting that requires movement or

copying of stored objects.

CHAPTER 4

Experiments

In order to demonstrate the use cases for native equivalence relations in Datalog, a series of experiments

have been set up. We compare the run-time of the implicit representation of equivalence relations to the

explicit representation in a real-world benchmark - identifying users from the Bitcoin blockchain. For

points-to analysis, we compare two different types of analyses, a subset based analysis and an equivalence

analysis - where the latter had not been able to be implemented in SOUFFLÉ until now due the associated

computational cost in a declarative programming language.

Datalog has only recently demonstrated productive examples of points-to analysis over billions of tuples,

as early as 2016. (Scholz et al., 2016) This was also performed in the SOUFFLÉ suite, on a similar input

domain as our points-to analysis performed in Section 4.2 on the OpenJDK. We demonstrate productive

examples of analyses generating a trillion tuples in under four seconds.

4.1 Bitcoin User Groups

Bitcoin provides a pseudonymous way of digital transactions, wherein transfers of the Bitcoin currency

are enabled through public transactions published on the blockchain. Figure 4.1 provides a simplified

view of how each published block (occurring approximately every 10 minutes) contains a series of

transactions, a hash of the previous block and additional data.

85

4.1 BITCOIN USER GROUPS 86

Prev Hash Nonce

Block

Tx Tx Tx ... Tx

Prev Hash Nonce

Block

Tx Tx Tx ... Tx

Prev Hash Nonce

Block

Tx Tx Tx ... Tx

Newer Blocks

FIGURE 4.1: The blockchain structure (Modified from (Nakamoto, 2008))

For our purposes, we consider each transaction to contain a series of input identifiers which are the public

keys corresponding to the private keys used to sign the transaction, a series of output identifiers which are

the public keys of the receiving users and the quantity of Bitcoin to send them each, and finally a hash of

the entire transaction. We picture a simplified transaction in Figure 4.2.

Addresses In:
1AHBN8YuQVqKLzZo4V2L5WCxewwr7xtDHS
1HvhZyxtJfSWxDJjcpM8THfQ3yB6GPxZX9

Addresses Out:

1Lq5DVmok8p9opyy5QFBX2cM48xTELecaj
16ZdsGm3J9uTt5K7N8ojW8D66X7kMJCytS

Transaction Hash
c1c50ac324f45d0ecc2d8b1708666ca43ea894ebaf9cb79aceba914867c029c5

FIGURE 4.2: A simplified Bitcoin transaction

The public keys have an associated private key, which must be used in order to ensure authenticity

of that action via the act of signing - similar to how an ordinary cheque requires the signature of the

sender in order to be valid. This private key must be secret, otherwise an adversary will be able to

create transactions on behalf of the private key owner. A demonstration of the signing, and associated

verification is pictured in Figure 4.3. The public key is considered public, that is, anyone is able to possess

it without consequence - and in fact is required to if they wish to confirm the validity of the transaction. A

new private-public key pair is typically generated per transaction, as this is considered good practice for a

payee. (Reid and Harrigan, 2013) The word wallet is often used to describe addresses that have Bitcoin

amounts associated with them, analogous to a wallet that contains cash. After the transaction is signed, it

4.1 BITCOIN USER GROUPS 87

is forwarded on to the Bitcoin network to be added into the next available block (provided it has provided

a large enough transaction free & the transaction is valid).

Pay
$500 to
Charlie

Alice's
public key

Sign

6EB69570
08E03CE4

Verify

Alice's
private key

Alice

Bob

Pay
$500 to
Charlie

FIGURE 4.3: Signing a transaction with a private key (Modified from (GÃűthberg, 2006))

As the private key must be secret, we are able to consider all transactions associated with the corresponding

public key to have been created by the same user. For any meaningful analysis over the user distribution, it

is necessary to group public keys by the user that owns them. Reid and Harrigan proposed considering all

public keys that are input to the same transaction to be controlled by a single person, as they require control

of the associated private keys. (Reid and Harrigan, 2013) The website WalletExplorer (Janda, 2013)

uses this heuristic in order to identify Bitcoin exchanges (sites that are used to trade fiat currencies with

cryptocurrencies like Bitcoin). (jstolfi , https://www.reddit.com/user/jstolfi) As noted, this is inaccurate

due to some Bitcoin services handling private keys and mix inputs together as part of their methodology.

Notably, this heuristic can be represented by an equivalence relation, as it is reflexive (public keys are

owned by the same user as their own user), symmetric (likewise), and transitive (inputs across multiple

transactions may be shared). We wish to demonstrate the efficiency of the implicit representation over the

previous method of explicit representation of equivalence relations.

4.1 BITCOIN USER GROUPS 88

4.1.1 Input Dataset

As our dataset, we use a subset of all Bitcoin transactions from 2017 - there are over 200 million

transaction/input pairs that year. We are only able to analyse a subset of the transactions due to the

computational and space requirements of doing so. In Table 4.1, the left-hand column denotes how many

pairs are loaded in as facts. This data was scraped using the high-performance BlockSci tool (Kalodner

et al., 2017), which enables simple interaction with the large blockchain dataset, and provides a multi-

threaded method to extract data.

Size PubKeys Transactions Classes Singletons Largest Class Mean Size Same User Pairs
1000 971 935 906 854 5 1.07 1135
5000 4685 4117 3803 3303 11 1.23 7947
10000 9141 7516 6662 5726 42 1.37 26965
50000 40893 29881 24451 21929 1420 1.67 3764247
100000 76129 54555 43335 38185 2768 1.76 13351193
500000 343008 236291 171874 144299 9675 2.00 286292918
1000000 717098 481599 340467 279324 29344 2.11 1465193896
5000000 3442156 2737910 1776519 1469558 61384 1.94 12096911888
10000000 6631620 5461708 3411035 2834282 124007 1.94 49007650539

TABLE 4.1: Statistics of the input data set

Whilst large-scale Datalog analyses have been performed, these examples did not contain examples of

transitivity which is what we believe to be the largest contributor of program execution time in our run of

the explicit representation, as described earlier in Section 2.3.

4.1.2 Datalog Programs

To demonstrate the conciseness of implementing this experiment, Snippet 4.1 is the Datalog program

used for the implicit equivalence relation. We mark the same_user(user1, user2) relation as an

equivalence relation (eqrel) to induce the reflexive, symmetric, and transitive nature of this relationship

between transactions. We make modifications to the generated C++ file in order to benchmark the

individual components of the runtime: I/O, solving, and enumeration over all pairs. For the enumeration

over all pairs, it was necessary to omit writing the output and instead increment an atomic integer, in

order to focus entirely on the speed of iteration, thus removing the bottleneck of disk I/O. It was not

necessary to speed up for input (perhaps via mapping the fact file into a RAM disk), as these facts from

the extensional database (EDB) were loaded into a regular relation, identical between both implicit and

4.1 BITCOIN USER GROUPS 89

explicit equivalence relation programs - and thus do not interfere with the experiment as we discard these

index timing from the total compared solving time.

Iteration over the final output pairs (in this case, the pairs of users that are classified as the same) is done

in a single thread, as it typically is written to disk. We modify this to occur in parallel through augmenting

the generated C++ file, to simulate the rule being fed into another rule. This allows us to compare the

iteration speeds over the relation across implementations.

These experiments were each run 5 times each, and averaged out except for those exceeding computational

time or crashing, as marked.

LISTING 4.1: Implicit Equivalence Relation Benchmark Program

1 .type TxId

2 .type PubKey

3 .decl transaction_input(tx : TxId, userIn : PubKey)

4 .input transaction_input()

5 // whether two users are the same

6 .decl same_user(user1 : PubKey, user2 : PubKey) eqrel

7 .output same_user()

8

9 same_user(u1, u2) :-

10 transaction_input(tx, u1),

11 transaction_input(tx, u2).

The comparative explicit implementation requires an additional two rules for symmetry and transitivity to

form an equivalence relation - reflexivity is not required, as within the same_user_explicit(u1,

u2) rule on line 9, there is no restriction that u1 and u2 must be different.

LISTING 4.2: Explicit Equivalence Relation Benchmark Program

1 .type TxId

2 .type PubKey

3 .decl transaction_input(tx : TxId, userIn : PubKey)

4 .input transaction_input()

5 // whether two users are the same

6 .decl same_user_explicit(user1 : PubKey, user2 : PubKey)

4.1 BITCOIN USER GROUPS 90

7 .output same_user()

8

9 same_user_explicit(u1, u2) :-

10 transaction_input(tx, u1),

11 transaction_input(tx, u2).

12 // symmetry

13 same_user_explicit(u1, u2) :- same_user_explicit(u2, u1).

14 // transitivity

15 same_user_explicit(u1, u3) :- same_user_explicit(u1, u2),

same_user_explicit(u2, u3).

4.1.3 Results

This experiment also demonstrates the current cost of reading in facts, in Figure 4.4 we demonstrate

the cost of loading in these input tuples from disk, as well as the associated memory of the program up

until that point. We observe a rough proportional relationship between fact read in time and memory

consumption of the loaded facts, consistent with the internal storage implementation of SOUFFLÉ . We

use the GNU time program (version 1.7) to measure this, using the -f "%e" flag, which prints the

peak RSS in kilobytes, (Eddelbuettel, 2000) and terminating the program after all the threads have been

read from file.

4.1 BITCOIN USER GROUPS 91

1 5 10 50 100 500 1000 5000 10000
Number of Bitcoin Transactions (thousands)

10−3

10−2

10−1

100

101
Ti

m
e

(s
)

I/O Time and Memory Consumption

Time (s)
Memory (MB)

101

102

103

M
em

or
y

(M
B

)

FIGURE 4.4: Memory and time consumption of the input symbol table

SOUFFLÉ transforms input terms from symbols to numbers within the RamDomain, that is, any term of a

fact is mapped to an integer, similar to the densification step in our data-structure. Whilst this does mean

that the arguments inserted into the equivalence relation data-structure are assigned ordinal numbers twice,

this is necessary as if other facts or symbols are read in from file (or in fact generated via concatentation

and aggregations in Datalog) before, the arguments inserted into the equivalence relation are no longer

the sequential numbers starting from 0. On top of this, numeric types (.type number) do not have

mapping applied to them, so inserting these into the equivalence relation requires densification in order to

ensure a low footprint.

This mapping from symbol to numbers is not well optimised - it uses a std::unordered_map on

a single thread, with all files loaded in sequentially. A future improvement to SOUFFLÉ may include

optimising this to perform I/O in parallel when possible. Internal code profiling showed that the hash-map

was the bottleneck compared to disk read time, and thus could be replaced with a concurrent equivalent,

wherein a busy-queue can insert into, where the queue is populated from the fact files.

Figure 4.5 (log scale) demonstrates the solving time for the same_user predicate, which excludes

reading facts from file, and iterating over the final derived facts.

4.1 BITCOIN USER GROUPS 92

1000 5000 10000 50000 100000 500000
Number of Input Tuples

10−3

10−2

10−1

100

101

102

103

104

105

Ti
m

e
(s

)

Solving Time

Eqrel: 1 thread
Eqrel: 2 thread
Eqrel: 4 thread
Eqrel: 8 thread
Explicit: 1 thread
Explicit: 2 thread
Explicit: 4 thread
Explicit: 8 thread

FIGURE 4.5: Solving time for the same_user* predicate for the Bitcoin data set

Input Size
Eqrel Explicit

Threads
1 2 4 8 1 2 4 8

1000 0.00062 0.00062 0.00081 0.0038 0.0015 0.0014 0.0013 0.0017
5000 0.0036 0.0030 0.0025 0.0054 0.013 0.011 0.01 0.014
10000 0.0078 0.0060 0.0046 0.0066 0.048 0.036 0.029 0.032
50000 0.087 0.053 0.032 0.027 72 36 18 15
100000 0.29 0.17 0.093 0.070 490 240 120 100
500000 4.7 2.6 1.4 0.99 51000* 21000* 11000* 8600*
1000000 10 5.6 2.9 2.1 - - - -
5000000 46 25 13 9.4 - - - -
10000000 93 51 26 19 - - - -

TABLE 4.2: Solving Time (seconds, 2 s.f.), * indicates the experiments were only ran once

4.1 BITCOIN USER GROUPS 93

The data indicates the implicit representation grows linearly with the size of the input domain, except for

a 16x jump in solving time between 100000 and 500000 input tuples. We are currently unaware of the

cause for this, which indicates additional internal profiling may necessary to investigate further, although

the discrepancy is only minor (≈ 3x). The relationship between the input domain size and the solving

time for the single threaded implicit implementation is demonstrated in Figure 4.6.

103 104 105 106 107

Number of Input Tuples

10−3

10−2

10−1

100

101

102

Ti
m

e
(s

)

Single-threaded Solve Time (Implicit)

FIGURE 4.6: Solving time of the implicit program vs. input tuples

Whilst we were not able to extend the experiment for larger tuples in the program using the explicit

representation, we believe the relationship is linear to the number of output tuples, which grows relatively

quadratic to the input tuples. Figure 4.7 demonstrates the relationship between the solving execution time

and the number of output tuples for the explicit representation.

4.1 BITCOIN USER GROUPS 94

103 104 105 106 107 108

Number of Output Tuples

10−3

10−2

10−1

100

101

102

103

104

105

Ti
m

e
(s

)

Single-threaded Solve Time (Explicit)

FIGURE 4.7: Solving time of the explicit program vs. output tuples

In addition to the poor running time, the number of generated tuples for the explicit version is inconsistent

with both the implicit implementation and a custom imperative implementation of the program. This oc-

curs for all numbers of threads, indicating that it is not a race condition, but instead an issue with handling

large programs. Interestingly the single threaded explicit program was the most inaccurate, generating

319687058 output pairs compared to the correct amount of 286292918, a 12% over-approximation. The

2, 4, and 8 threaded programs each generated incorrect numbers of output tuples, albeit within a 1% error

margin.

We also observed the eqrel (implicit) programs for 10 million input tuples crashing occasionally, either

due to exceptions or segmentation faults. 1 out of 5 of the single threaded runs segfaulted, no two-threaded

runs crashed, 1 of the 5 four-threaded runs caused an exception, and 2 of 5 runs of the eight-threaded run

segfaulted. We are currently unaware of the cause of this behaviour.

Iteration time over the pairs indicates an overhead for the smaller sized equivalence relations in the

implicit representation, gradually matching the performance as the number of output tuples increases.

This overhead is most apparent for operation over 1000 to 10000 input tuples inclusive, which we attribute

to the constant time overhead of managing a hash-map and lists in generating the equivalence cache in the

implicit representation program. Figure 4.8 demonstrates the timings against the number of input tuples.

4.1 BITCOIN USER GROUPS 95

Note that the iteration is for an incorrect number of tuples for the 500000 input tuple explicit program,

which potentially provides a 12% slowdown for the explicit single-threaded program.

1135
7947

26965

3764247

13351193

286292918

Number of Output Tuples

10−3

10−2

10−1

100

101

Ti
m

e
(s

)

Iteration Time

Eqrel: 1 thread
Eqrel: 2 thread
Eqrel: 4 thread
Eqrel: 8 thread
Explicit: 1 thread
Explicit: 2 thread
Explicit: 4 thread
Explicit: 8 thread

FIGURE 4.8: Iteration time versus the number of output tuples

It is interesting to note that the iteration time of the single-threaded implementation is consistently

equal or better than the parallel iteration, despite it being intuitive that the threads are performing work

independently. We are currently unsure of where this discrepancy lies, as it exists in both eqrel and

explicit programs which may indicate a internal SOUFFLÉ issue. Internal profiling may be required to

resolve the root cause. This time may also not be indicative to the actual iteration time over the pairs, as

we increment an atomic integer to count the number of output tuples, as well as preventing the loop from

being optimised out. In fact, this atomic integer may be the cause for the slowdown over multiple threads,

4.1 BITCOIN USER GROUPS 96

as despite our usage of the relaxed memory consistency model for this variable, the x86 architecture

has strong memory guarantees as a baseline standard (Preshing, 2012) so contention over this variable

may cause excessive synchronisation, and thus a slowdown in execution. If this is the case, it would also

explain performance discrepancies with the performance of increasing parallelism with PiggyList.

For profiling the memory consumption, we measure the peak RSS (resident set size) memory usage,

which incidentally also includes the I/O symbol table. Figure 4.9 demonstrates the increase in the memory

consumption of programs, with Table 4.3 detailing the figures.

103 104 105 106 107

Number of Input Tuples

101

102

103

104

M
em

or
y

(M
B

)

Memory Consumption - Single Threaded

Eqrel
Explicit

FIGURE 4.9: Memory use for both representations versus the number of input tuples

Input Size Memory Consumption (MB)
Implicit Explicit

1000 6.9 6.4
5000 15 15
10000 23 26
50000 73 270
100000 130 790
500000 560 13000
1000000 1100 -
5000000 5400 -
10000000 11000 -

TABLE 4.3: Memory Consumption of the Bitcoin Benchmarking Programs (MB, 2 s.f.)

4.2 STEENSGAARD ANALYSIS 97

Based on the figures, we observe a roughly linear increase in the memory consumption for the implicit

representation, whereas for the explicit representation the growth appears roughly quadratic.

4.1.4 Discussion

We observe a near-quadratic runtime for the explicit representation, while the implicit representation was

approximately linear, as was expected. This demonstrates that on real-world data-sets, even for those with

medium-sized equivalence classes, quadratic run-times for the explicit representation will be observed,

and thus using the implicit representation will dramatically improve solving performance for programs

containing equivalence relations.

This trend was also observed for space consumption - we demonstrate that an explicit representation does

in fact take quadratic space to represent, as was difficult to show in Section 3.1.5 as the time complexity

of the explicit representation made benchmarks impractical.

A simple single-threaded Python imperative implementation took around 41 seconds to perform Union-

Find over the 10 million input domain. The declarative implementation is only slower by a factor of 2, a

narrower gap than usual - typical declarative programs are often magnitudes slower than their imperative

equivalents. (Kastrinis et al., 2018) SOUFFLÉ was originally designed to provide similar performance to

imperative implementations, and to be simpler to write. (Scholz et al., 2016)

4.2 Steensgaard Analysis

In order to statically analyse a program, the notion of memory modelling must be explored. One form of

modelling is points-to analysis, which computes the objects that variables can point to over the duration of

the program. As the amount of memory that will be allocated during a program could be unbounded (as

is the case in Snippet 4.3), we require a memory abstraction. We treat all objects allocated at a program

site to be interchangeable, and represent them by a single symbol. This method is known as representing

each dynamic heap object their abstract location. (Sridharan et al., 2005) In Snippet 4.3, we may say the

variable x points to o4, where oi refers to the object allocated on line i.

LISTING 4.3: Unknown quantity of memory allocation

1 int* foo() {

2 int* x;

4.2 STEENSGAARD ANALYSIS 98

3

4 while(condition) x = (int*) malloc(sizeof int);

5

6 return x;

7 }

This form of memory modelling was introduced by Andersen, (Andersen, 1994) where interactions

between variables can be modelled via subset-constraints on their respective points-to sets. If a variable

has the assignment y = z, then we say that the points-to set of y presumes all points-to elements of

z - that is, pts(y) ⊇ pts(z), where pts(y) denotes the points-to set of y. This form of analysis was

initially performed as flow-insensitive and context-insensitive meaning that the flow (or ordering of

executed statements) of the program nor the execution contexts (i.e. where/what called the functions)

are considered. This analysis carries a worst case cubic complexity (Shapiro and Horwitz, 1997); a

less accurate, but significantly faster analysis was proposed by Steensgaard that ran in O(αn) time,

using union-find data-structures. (Steensgaard, 1996) This analysis carries the same flow- and context-

insensitivity and Andersen’s original analysis. The Steensgaard is much less accurate for a points-to

analysis as it merges points-to sets on assignment, rather than retaining it as a subset constraint. This has

the benefit of being trivially representable within a union-find data-structure (objects that share the same

points-to set are within the same set within a disjoint-set structure), however will result in extremely large

overheads.

Adding either flow- or context-sensitivity to a points-to analysis increases the usefulness of the points-to

analysis, (Lhoták and Hendren, 2006) however the computational cost of such an analysis dramatically

increases, although specialised methods exist to compute these. (Whaley and Lam, 2004)

4.2.1 Field-Sensitive Analysis

In addition to these, a field-sensitive analysis allows writes and reads to fields within records or objects to

be disambiguated from other fields. Bodik & Sridharan proposed a simple flow-sensitive analysis, (Srid-

haran et al., 2005) that performs conditional points-to - if a variable a loads from a field b1.f, whilst a

variable c stores to field b2.f, then a may point-to the same objects that c points to, if b1 and b2 point

to shared memory. When two variables are said to point-to the same memory (i.e. the intersection of their

points-to sets is non-empty), they are said to alias.

4.2 STEENSGAARD ANALYSIS 99

In Table 4.4, we construct the Bodik field-sensitive analysis, in addition to a modified Steensgaard

analysis, which adds conditional assignment over aliasing fields.

Description Assignment Constraint
Bodik Steensgaard*

Allocation a = new o() o ∈ pts(a) o ∈ pts(a)
Assignment a = b pts(a) ⊇ pts(b) pts(a) = pts(b)

Conditional Alias a = b1.f; b2.f = c
alias(b1, b2)⇒
pts(a) ⊇ pts(c)

alias(b1, b2)⇒
pts(a) = pts(c)

TABLE 4.4: Constraint rules for the simplified field-sensitive language grammar

For the following program in Snippet 4.4, the corresponding to field-sensitive points-to set is depicted in

Figure 4.10. For this example, both Bodik and Steensgaard* analyses result in the same points-to set. On

line 5, the variable z is stored to y.f, whilst on line 6 the variable w.f is loaded from into v. As y and

w alias (they both point to at least one shared object), the conditional alias holds, and thus we perform the

equivalent operation for v = z. For our simplified Steensgaard analysis, we merge the two points-to

sets of z and v, whilst for Bodik, we apply a subset constraint.

1 x = new o(); // o1
2 z = new o(); // o2
3 w = x;
4 y = x;
5 y.f = z;
6 v = w.f;

LISTING 4.4: Example
field-sensitive program (Sridharan
et al., 2005)

x

y

w

O 1

v

z
O 2

FIGURE 4.10: Resulting points-to
set - field sensitive analysis

These Steensgaard analyses have typically had difficulty in matching the expected near-linear time when

applied in a declarative context. Steensgaard relies on disjoint-sets which is by, implementing union-find,

a destructive data-structure and thus is difficult to directly represent purely declaratively. Very recently,

there have been promising results from expressing the union-find data-structure as purely declarative

statements within the LogicBlox Engine. (Balatsouras et al., 2017) We wish to explore this in future

4.2 STEENSGAARD ANALYSIS 100

work.The equivalence relation that is induced by the use of the equality-based set operations can be

simulated by the three explicit rules for reflexivity, symmetry, and transitivity, at the expense of efficiency.

However, for this input size it is not feasible to compute the Steensgaard analysis with the explicit

representation. As the explicit representation run-time is proportional to the total number of output tuples

stored (observed in Section 4.1), and the output tuples for the Steensgaard program is a trillion, a rough

back of the envelope calculation shows it would take over 6 years to calculate (14 hours for the 280

million tuple program⇒ 14 hours× 1151866748812
286292918 ≈ 6.6 years).

4.2.2 Datalog Programs

We perform this benchmark using for two programs; a field-sensitive Steensgaard analysis written using

the implicit equivalence relations (Snippet 4.6), and a field-sensitive Bodik analysis written with subset

constraints (Snippet 4.7). All files share the same header, which declares the input rules (Snippet 4.5).

LISTING 4.5: Common Input Rules

1 // o: x := new T()

2 .decl alloc(x:symbol, o:symbol)

3 // x := y;

4 .decl assign(x:symbol, y:symbol)

5 // x := y.f;

6 .decl load(x:symbol, y:symbol, f:symbol)

7 // x.f := y;

8 .decl store(x:symbol, f:symbol, y:symbol)

9

10 // input EDB as CSV files

11 .input alloc, assign, load, store

Instead of iterating over all the derived tuples (as they vary massively in size between analyses), we

simply print the size of the relation, which is the number of tuples stored. We mark the var points-to set

(vpt) as eqrel to act an equivalence relation and thus represent tuples implicitly.

LISTING 4.6: Steensgaard Field-Sensitive Analysis in SOUFFLÉ

1 .decl vpt(x:symbol, y:symbol) eqrel

2 // allocation sites

4.2 STEENSGAARD ANALYSIS 101

3 vpt(x,y) :-

4 alloc(x,y).

5

6 // assignments

7 vpt(x,y) :-

8 assign(x,y).

9

10 // load/store pairs

11 vpt(y,p) :-

12 store(x,f, y),

13 load(p,q,f),

14 vpt(x,q).

15

16 // output computation

17 .printsize vpt

In the Bodik analysis, we can simply express subset constrains via Datalog rules. The assignment

(assign) rule (line 9) dictates that for an assignment x = y, if an object is within y’s vpt set, it is now

within x’s. We see a similar pattern for the load/store pair constraint (line 14), that for the object that is

stored to (x.f) and loaded from (q.f) if they alias (they share an element within the vpt set), then we

treat it as an assignment p = y and thus update the vpt set as per the assignment constraint.

LISTING 4.7: Bodik Field-Sensitive Analysis in SOUFFLÉ

1 // IDB

2 .decl vpt(x:Variable, o:Object)

3

4 //// allocation sites

5 vpt(x,o) :-

6 alloc(x,o).

7

8 // assignments

9 vpt(x,o) :-

10 assign(x,y),

11 vpt(y,o).

4.2 STEENSGAARD ANALYSIS 102

12

13 // load/store pairs

14 vpt(p,o2) :-

15 store(x,f, y), // x.f := y

16 load(p,q,f), // p := q.f

17 vpt(x,o1), // alias x q

18 vpt(q,o1),

19 vpt(y,o2).

20

21 // output computation

22 .printsize vpt

4.2.3 Results

Loading in the facts from file consistently takes ≈ 5 seconds, and 992MB of memory. This consists

of four fact files: alloc.facts (58MB), assign.facts (275MB), load.facts (31MB), and

store.facts (9.8MB). This is the same for both Steensgaard and Bodik analyses. Running the two

results in vastly different points-to sets - as Steensgaard is an over-approximation of the points-to set as

compared to Bodik. The final count for Steensgaard is 1151866748812 (1.1 trillion) tuples, whilst for

Bodik 389210 output tuples are generated. We believe this is the first Datalog program to have stored a

trillion tuples, as Steensgaard analyses heavily favour imperative implementations and thus have not seen

implementation in declarative languages before.

The solving runtime for the analyses is demonstrated in Figure 4.11 and Table 4.5.

4.2 STEENSGAARD ANALYSIS 103

1 2 4 8
Threads

0

1

2

3

4

5

Ti
m

e
(s

)

Points-to Analysis Solve-time

Steensgaard
Andersen

FIGURE 4.11: Solving time for various thread counts for each analysis

Threads Analysis
Steensgaard Bodik

1 5.6 5.2
2 4.5 3.1
4 3.6 2.1
8 3.3 1.5

TABLE 4.5: Solving time for the points-to analyses (seconds, 2 s.f.)

We can see that the Steensgaard analysis takes longer to solve than the Bodik analysis, and that the gains

from adding additional threads does not significantly improve the running time as compared to the Bodik

analysis. We can partition the solving program into several stages for each analysis, as is observed within

the generated C++ code:

Steensgaard:

(1) alloc - insert all rules from the alloc relation

(2) assign - insert all rules from the assign relation

(3) extend - insert knowledge learned from the delta into the current knowledge

4.2 STEENSGAARD ANALYSIS 104

(4) insert all - used to generate a delta relation for the next step

(5) load store - perform the semi-naïve evaluation on this relation until fixed-point

From manual analysis of the generated C++ code, we see that the extend is unnecessarily inserted in

this case, as no information has been loaded into the relation as used passed into the extend operation.

Omitting this reduces the run-time, but may not necessarily be done automatically, as it depends on the

program loaded in and thus may introduce incorrect behaviour if applied generally.

Bodik:

(1) alloc - insert all rules from the alloc relation

(2) insert all - used to generate a delta relation for the next step

(3) mixed (assign & load store) - perform the semi-naïve evaluation until fixed-point

As the assign and load/store rules are both recursive, these are performed in the same loop, until

a fixed-point is reached, as new knowledge in one may generate knowledge in the other rule.

Due to this structural difference in the resulting program, we present the time breakdown for the above

sections in Table 4.6.

Threads Steensgaard Bodik
alloc assign extend insert all load store alloc insert all mixed

1 0.34 1.4 1.0 2.0 0.81 0.23 0.19 4.7
2 0.27 0.94 0.78 1.8 0.67 0.15 0.16 2.8
4 0.20 0.61 0.58 1.8 0.44 0.13 0.23 1.8
8 0.18 0.45 0.52 1.8 0.37 0.13 0.19 1.2

TABLE 4.6: Time breakdown of the points-to analysis

As mentioned, by removing the unnecessary extend section of the generated code, we are able to save

up to a second. The portion of generated code that takes the longest time is the insert all snippet.

This also demonstrates a poor threaded scaling - this is due to it not being implemented via OpenMP. It is

possible to do so, but was omitted based on incorrect assumptions (as this demonstrates). It would be

beneficial to repeat this benchmark again with this changed. These changes would bring the Steensgaard

implementation to only have a marginal overhead over the Bodik analysis.

4.2 STEENSGAARD ANALYSIS 105

As demonstrated in Figure 4.12, the memory overhead for the Steensgaard analysis is comparable to the

computational overhead.

Steensgaard Andersen
Analysis

0

200

400

600

800

1000

1200

1400

M
em

or
y

(M
B

)

Points-to Analysis Memory Consumption

FIGURE 4.12: Maximum resident memory size for each analysis

We believe the potential changes made above would not have an effect in the overall memory consumption.

4.2.4 Discussion

Steensgaard analysis was proposed to combat the associated cost of Bodik analysis, (Steensgaard,

1996) due to the poor computational power at the time of their introduction in the 1990s. Since then

computational power has dramatically improved, and as such, the runtime of an Bodik analysis (worst-case

cubic) is negligible on modern hardware.

However, despite the recent rise of declarative languages for performing of points-to analysis, Steensgaard

analyses were still strictly confined to imperative implementations due to their nature. (Kastrinis et al.,

2018) In demonstrating similar performance we believe we have proven that Steensgaard analyses are

now reasonable within Datalog.

4.2 STEENSGAARD ANALYSIS 106

There are multiple optimisations that could be made, based on the above performance analysis, with

the performance breakdown indicating that the lack of parallelism for some operations significantly

contribute to the running time for larger programs.

CHAPTER 5

Future Work

Based on both the internal micro-benchmarks (i.e. benchmarking the individual layers) and the full

system benchmarks showed areas of improvement. These may potentially be both in the algorithms for

each operation, or, within the choice of data-structures and potential micro-optimisations. As the program

is highly repetitive in that some functions are called millions, billions, or even trillions of times, minor

improvements in code may correspond to significant improvements in memory usage or runtimes.

As noted in the related work, a recent paper An Efficient Data Structure for Must-Alias Analysis by

Kastrinis et al. investigates the use of a declarative union-find program for a points-to analysis - that is,

union-find was implemented via pure Datalog statements. Writing equivalent SOUFFLÉ programs and

comparing the runtime to our implicit implementation is a highly relevant area of further research. We

were not able to perform this due to the implicated time constraints with such a recently published paper.

We note further areas of research and improvement that could be made in the various layers of the

data-structure.

5.1 Equivalence Relation

Currently, users of SOUFFLÉ must must tag their relations as eqrel in the declaration in order to generate

the implicit behaviour. It is possible to perform an analysis on the relations to detect equivalence relations

automatically via detecting reflexive, symmetric, and transitive rules. Pattern matching is one way to

achieve this, however this may not capture all equivalence relations. This behaviour may be unwanted,

as some SOUFFLÉ features were not designed for use with implicit relations as this implementation is

the first example of such functionality. This interfered with separate features such as provenance (i.e.

computing which rules were used to compute a fact), and magic-set optimisations - discussion with the

107

5.2 SPARSE MAPPING 108

other developers of SOUFFLÉ indicates this is primarily due to problems in the implementation of, and

not the theoretical limitations of, these features.

Some functions proved to impart a substantial performance impact, or, not a great improvement in

performance as the parallelism factor was increased. As explored in the Steensgaard points-to benchmark,

we observe several functions or portions of the generated code that interact with the equivalence relation

do not enjoy as linear an improvement as the comparative Bodik analysis. Investigating this with

additional internal profiling may reveal the root cause.

Due to time constraints, we were not able to investigate the cost of generating the equivalence cache,

or whether threading the internals of this function would yield considerable benefits. We also wish to

investigate additional kinds of iterators for the partitioning - namely a multi-set closure, when dealing

will small equivalence classes. There were also stability issues for the extremely large Bitcoin datasets,

with almost 20% of runs crashing due to segfaults or exceptions.

Based on the improved performance demonstrated in the benchmarks of the Libcuckoo map over the Intel

TBB map, it would be worth investigating the potential run-time improvements in also integrating this

map.

The investigation of the perceived overhead of the over-approximation of the delta knowledge has not

been detailed. Depending on this, it may result in the ability of other fast, approximation strategies for

other data-structures for relations in SOUFFLÉ .

5.2 Sparse Mapping

In internal profiling we observed the sparse mapping layer to take a significant portion of execution,

namely the hash-map queries and operations introduced significant constants into the runtime. These

hash-maps are highly optimised for general use, however for improved performance we may benefit from

stripping functionality and implementing custom logic. As a key may only be set once, we may be able

to optimise the internal hash-map logic.

We were not able to explore lock-stratification as an contention strategy for some of the hash-maps. By

doing so, we may see improved performance above the optimistic dense element allocation strategy.

5.3 PIGGYLIST 109

Due to unresolved bugs, we were not able to complete the integration of the Libcuckoo hash-map into

our Densifier layer. Based on our micro-benchmarking we saw this hash-map performed better than the

Intel hash-map by 95% in some cases. Integrating this, and re-running the benchmarks may result in

major improvements, potentially enough to make the Steensgaard analysis perform faster than the Bodik

analysis.

In general, this layer did not see a drastic improvement as the parallelism factor increased. In fact, the

single-threaded performance was often better than all multi-threaded runs. Online benchmarks of the

data-structures tended to show a linear, if not super-linear improvement. (Preshing, 2016c) Profiling may

reveal the underlying cause, and consequently offer a performance boost.

5.3 PiggyList

Further investigation and formalisation of the wait-free versions and reduction in memory ‘bottlenecks’

should be performed. Furthermore, within the literature on wait-free data-structures, there appears to

little discussion on space complexities. The probabilistic approach yield favourable results in application

to other existing wait-free data-structures.

As the method has proved viable for PiggyList with a simple linear dice-roll function, exploring additional

functions may result in a much-lower average overhead. At an extreme, we may be able to procedurally

generate empirically ‘optimal’ (i.e. no recorded overhead) functions through reinforcement learning.

For all versions, we observed that the data-structure did not see a super-linear speed improvement.

We suspect this is due to the atomic synchronisation that is implicit on x86 architectures, even when

specifying relaxed memory models. Running the PiggyList benchmarks on a CPU architecture with a

weaker memory model, such as ARM, may confirm this.

Conclusion

In this work we designed and implemented concurrent data-structure for logical equivalence relations.

To deploy a self-computing data-structure that performs rules for reflexivity, symmetry, and transitivity

implicitly, the semi-naïve evaluation strategy had to be changed. In addition, we designed a layered

data-structure architecture to provide a seamless integration of an equivalence relation in a Datalog engine

such as SOUFFLÉ . The data-structure was designed for parallel execution so that large volumes of data

can be processed efficiently.

The data-structure has three layers. The first layer provides a relational interface to the Datalog engine.

This layer provides fast iterations over the implicitly stored equivalence pairs. The key insight for

performance for the first layer was the construction of a cache to support parallel iteration (whilst

guaranteeing no overlapping domains) in a performant manner.

The second layer condenses the domain of the logical relation to an ordinal domain. The ordinal domain

provides an efficient storage of elements in the subsequent find-union data-structure. The implementation

of the second layer is a bijective map between these sparse and dense values.

The third layer of the data-structure is a parallelised union-find data-structure. This data-structure grows

monotonically and we were required to implement a parallel array called PiggyList to utilise the parallel

growth of data. The PiggyList has been shown to extend to wait-free guarantees, showing that the

wait-free guarantee of find-union can be retained even for non-fixed domains.

We have demonstrated the efficacy of our implementation in SOUFFLÉ through application to real-world

benchmarks. For a Bitcoin data-set, we compared the performance of the implicit equivalence relation

representation to an explicit representation which confirmed a quadratic speed-up in computing time, and

equivalent reductions in memory. For a points-to analysis, we show that a Steensgaard analysis can be

performed with approximately equivalent performance to an inclusion based analysis. The Steensgaard

analysis completed in under 4 seconds, and generated a trillion tuples. We estimated that computing the

explicit representation on the same dataset would take several years.

110

Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases: the logical level.
Addison-Wesley Longman Publishing Co., Inc.

Alfred V Aho and Jeffrey D Ullman. 1979. Universality of data retrieval languages. In Proceedings of
the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 110–119.
ACM.

Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M Hellerstein, and Russell Sears.
2010. Boom analytics: exploring data-centric, declarative programming for the cloud. In Proceedings
of the 5th European conference on Computer systems, pages 223–236. ACM.

Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. Ph.D.
thesis, University of Cophenhagen.

Richard J Anderson and Heather Woll. 1991. Wait-free parallel algorithms for the union-find problem.
In Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages 370–380.
ACM.

Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L
Veldhuizen, and Geoffrey Washburn. 2015. Design and implementation of the logicblox system. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages
1371–1382. ACM.

George Balatsouras, Kostas Ferles, George Kastrinis, and Yannis Smaragdakis. 2017. A datalog model of
must-alias analysis. In Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis, pages 7–12. ACM.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985. Magic sets and other
strange ways to implement logic programs. In Proceedings of the fifth ACM SIGACT-SIGMOD
symposium on Principles of database systems, pages 1–15. ACM.

David Blackman and Sebastiano Vigna. 2018. Scrambled linear pseudorandom number generators. arXiv
preprint arXiv:1805.01407.

Hans-J Boehm and Sarita V Adve. 2008. Foundations of the c++ concurrency memory model. In ACM
SIGPLAN Notices, volume 43, pages 68–78. ACM.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09, pages 243–262. ACM, New York,
NY, USA.

111

http://doi.acm.org/10.1145/1640089.1640108
http://doi.acm.org/10.1145/1640089.1640108

BIBLIOGRAPHY 112

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer.

Dirk Eddelbuettel. 2000. time(1) - linux man page.
Bin Fan, David G Andersen, and Michael Kaminsky. 2013. Memc3: Compact and concurrent memcache

with dumber caching and smarter hashing. In NSDI, volume 13, pages 371–384.
Yoshihiko Futamura. 1999. Partial evaluation of computation process—anapproach to a compiler-

compiler. Higher Order Symbol. Comput., 12(4):381–391.
Bernard A Galler and Michael J Fisher. 1964. An improved equivalence algorithm. Communications of

the ACM, 7(5):301–303.
Joel Gibson and Vincent Gramoli. 2015. Why non-blocking operations should be selfish. In Proceedings

of the 29th International Symposium on Distributed Computing (DISC’15), volume 9363 of LNCS,
pages 200–214. Springer.

Manu Goyal, Bin Fan, Ziaozhu Li, David G. Andersen, and Michael Kaminsky. 2018. libcuckoo.
https://github.com/efficient/libcuckoo.

Sergio Greco and Cristian Molinaro. 2015. Datalog and logic databases. Synthesis Lectures on Data
Management, 7(2):1–169.

Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. 2013a. Datalog and recursive
query processing. Foundations and TrendsÂő in Databases, 5(2):105–195.

Todd J Green, Shan Shan Huang, Boon Thau Loo, Wenchao Zhou, et al. 2013b. Datalog and recursive
query processing. Foundations and Trends® in Databases, 5(2):105–195.

David GÃűthberg. 2006. Public key encryption figure. [Online; accessed June 16, 2018].
Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura. 2011. µz– an efficient engine for fixed points

with constraints. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification,
pages 457–462. Springer Berlin Heidelberg, Berlin, Heidelberg.

Intel. 2017. Threading building blocks - high performance concurrent data structures.
AleÅą Janda. 2013. Walletexplorer.com: smart bitcoin block explorer.
Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: on synthesis of program analyzers.

In International Conference on Computer Aided Verification, pages 422–430. Springer.
jstolfi (https://www.reddit.com/user/jstolfi). 2015. How does wallet explorer know which wallets belong

to whom? Reddit /r/Bitcoin. Https://www.reddit.com/r/Bitcoin/comments/2ww4eb/how_does_wallet_-
explorer_know_which_wallets/ (version: 2015-02-24).

Harry Kalodner, Steven Goldfeder, Alishah Chator, Malte MÃűser, and Arvind Narayanan. 2017. Blocksci.
https://github.com/citp/blocksci.

George Kastrinis, George Balatsouras, Kostas Ferles, Nefeli Prokopaki-Kostopoulou, and Yannis Smarag-
dakis. 2018. An efficient data structure for must-alias analysis. In Proceedings of the 27th International
Conference on Compiler Construction, pages 48–58. ACM.

Nathan Keynes. 2017. souffle-lang/souffle - turing machine program.
Jon Kleinberg and Eva Tardos. 2005. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

https://linux.die.net/man/1/time
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
http://poseidon.it.usyd.edu.au/~gramoli/web/doc/pubs/contention-preprint.pdf
http://dx.doi.org/10.1561/1900000017
http://dx.doi.org/10.1561/1900000017
https://en.wikipedia.org/wiki/File:Public_key_encryption.svg
https://www.threadingbuildingblocks.org/
https://www.walletexplorer.com/
https://github.com/souffle-lang/souffle/blob/e7bf058b3d5bfa6c6cf824c1a059943ad3361f95/tests/evaluation/turing1/turing1.dl

BIBLIOGRAPHY 113

Monica S. Lam, Stephen Guo, and Jiwon Seo. 2013. Socialite: Datalog extensions for efficient social
network analysis. In Proceedings of the 2013 IEEE International Conference on Data Engineering
(ICDE 2013), ICDE ’13, pages 278–289. IEEE Computer Society, Washington, DC, USA.

Ondřej Lhoták and Laurie Hendren. 2006. Context-sensitive points-to analysis: is it worth it? In
International Conference on Compiler Construction, pages 47–64. Springer.

Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J Freedman. 2014. Algorithmic
improvements for fast concurrent cuckoo hashing. In Proceedings of the Ninth European Conference
on Computer Systems, page 27. ACM.

Changbin Liu, Lu Ren, Boon Thau Loo, Yun Mao, and Prithwish Basu. 2012. Cologne: A declarative
distributed constraint optimization platform. Proceedings of the VLDB Endowment, 5(8):752–763.

John Lockman. 2013. Introduction to programming with openmp.
Boon Thau Loo, Joseph M Hellerstein, Ion Stoica, and Raghu Ramakrishnan. 2005. Declarative routing:

extensible routing with declarative queries. In ACM SIGCOMM Computer Communication Review,
volume 35, pages 289–300. ACM.

William R Marczak, Shan Shan Huang, Martin Bravenboer, Micah Sherr, Boon Thau Loo, and Molham
Aref. 2010. Secureblox: customizable secure distributed data processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 723–734. ACM.

Paul E McKenney. 2005. Memory ordering in modern microprocessors, part i. Linux Journal, 2005(136):2.
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
Patrick Nappa. 2018. Calling .find(const_accessor, _) on a concurrent_hash_map during iteration causes

jumping iterator. issue 45 01org/tbb.
Jeff Preshing. 2011. Locks aren’t slow; lock contention is.
Jeff Preshing. 2012. Weak vs. strong memory models.
Jeff Preshing. 2016a. Concurrent data structures in c++. https://github.com/preshing/junction.
Jeff Preshing. 2016b. New concurrent hash maps for c.
Jeff Preshing. 2016c. A resizable concurrent map.
Fergal Reid and Martin Harrigan. 2013. An analysis of anonymity in the bitcoin system. In Security and

privacy in social networks, pages 197–223. Springer.
Ari Saptawijaya and Luís Moniz Pereira. 2013. Program updating by incremental and answer subsumption

tabling. In International Conference on Logic Programming and Nonmonotonic Reasoning, pages
479–484. Springer.

Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On fast large-scale program
analysis in datalog. In Proceedings of the 25th International Conference on Compiler Construction,
pages 196–206. ACM.

Claude Shannon. 1948. A mathematical theory of communication. Bell System Technical Journal,
27:379–423.

Marc Shapiro and Susan Horwitz. 1997. Fast and accurate flow-insensitive points-to analysis. In
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 1–14. ACM.

http://dx.doi.org/10.1109/ICDE.2013.6544832
http://dx.doi.org/10.1109/ICDE.2013.6544832
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=c3c38847-ca7e-41bf-aefa-fb232a777699&groupId=13601
https://github.com/01org/tbb/issues/45
https://github.com/01org/tbb/issues/45
http://preshing.com/20111118/locks-arent-slow-lock-contention-is/
http://preshing.com/20120930/weak-vs-strong-memory-models/
http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/
http://preshing.com/20160222/a-resizable-concurrent-map/

BIBLIOGRAPHY 114

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven points-to
analysis for java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’05, pages 59–76. ACM, New York,
NY, USA.

Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 32–41. ACM.

Dan Suthers. 2015. Ics 311 16: Disjoint sets and union-find.
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math., 5(2):285–

309.
Boon Thau Loo. 2010. Datalog and its application to network routing design.
Jeffrey D Ullman. 1989. Bottom-up beats top-down for datalog. In Proceedings of the eighth ACM

SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 140–149. ACM.
Various. 2018. std::memory_order - cppreference.
J Whaley. 2004. Bddbddb: Bdd based deductive database.
John Whaley and Monica S. Lam. 2004. Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. SIGPLAN Not., 39(6):131–144.
James C Wyllie. 1979. The complexity of parallel computations. Technical report, Cornell University.

http://doi.acm.org/10.1145/1094811.1094817
http://doi.acm.org/10.1145/1094811.1094817
https://www2.hawaii.edu/~janst/311/Notes/Topic-16.html
https://projecteuclid.org:443/euclid.pjm/1103044538
https://www.cis.upenn.edu/~boonloo/research/talks/fmin-loo.pdf
https://en.cppreference.com/w/cpp/atomic/memory_order
http://doi.acm.org/10.1145/996893.996859
http://doi.acm.org/10.1145/996893.996859

	Student Plagiarism: Compliance Statement
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.0.1. Contribution
	1.0.2. Outline

	Chapter 2. Background
	2.1. Datalog
	2.1.1. Evaluation

	2.2. Semi-naïve Evaluation
	2.2.1. Rule Transformation

	2.3. Equivalence Relations in Datalog
	2.4. Soufflé Syntax

	Chapter 3. Equivalence Relations in Datalog Engine
	3.1. Equivalence Relation Layer
	3.1.1. ADT
	3.1.2. Iteration
	3.1.3. Cache Generation & Implementation
	3.1.4. Partitioning
	3.1.5. Benchmarks

	3.2. Densifier
	3.2.1. ADT
	3.2.2. C.30ex++ 1000 Implementation
	3.2.3. Benchmarks

	3.3. Disjoint Set
	3.3.1. ADT
	3.3.2. Implementation
	3.3.3. PiggyList
	3.3.4. Disjoint Set and PiggyList Benchmarks

	Chapter 4. Experiments
	4.1. Bitcoin User Groups
	4.1.1. Input Dataset
	4.1.2. Datalog Programs
	4.1.3. Results
	4.1.4. Discussion

	4.2. Steensgaard Analysis
	4.2.1. Field-Sensitive Analysis
	4.2.2. Datalog Programs
	4.2.3. Results
	4.2.4. Discussion

	Chapter 5. Future Work
	5.1. Equivalence Relation
	5.2. Sparse Mapping
	5.3. PiggyList

	Conclusion
	Bibliography

