Provenance for Large-scale Datalog

David Zhao T, Pavle Suboti¢*, and Bernhard Scholz

fSchool of Computer Science, The University of Sydney.
*School of Computer Science, University College London.

July 11, 2019

Abstract

Logic programming languages such as Datalog have become popular as Domain Specific Languages
(DSLs) for solving large-scale, real-world problems, in particular, static program analysis and network
analysis. The logic specifications which model analysis problems, process millions of tuples of data and
contain hundreds of highly recursive rules. As a result, they are notoriously difficult to debug. While
the database community has proposed several data provenance techniques that address the Declarative
Debugging Challenge for Databases, in the cases of analysis problems, these state-of-the-art techniques
do not scale.

In this paper, we introduce a novel bottom-up Datalog evaluation strategy for debugging: our prove-
nance evaluation strategy relies on a new provenance lattice that includes proof annotations, and a
new fixed-point semantics for semi-naive evaluation. A debugging query mechanism allows arbitrary
provenance queries, constructing partial proof trees of tuples with minimal height. We integrate our
technique into Soufflé, a Datalog engine that synthesizes C++ code, and achieve high performance by
using specialized parallel data structures. Experiments are conducted with Doop/DaCapo, producing
proof annotations for tens of millions of output tuples. We show that our method has a runtime overhead
of 1.27x on average while being more flexible than existing state-of-the-art techniques.

1 Introduction

Datalog and other logic specification languages [24, 30, 5, 22] have seen a rise in popularity in recent years,
being widely used to solve real-world problems including program analysis [24, 3], declarative network-
ing [45, 23], security analysis [32] and business applications [5]. Logic programming provides declarative
semantics for computation, resulting in succinct program representations and rapid-prototyping capabilities
for scientific and industrial applications. Rather than prescribing the computational steps imperatively,
logic specifications define the intended result declaratively and thus can express computations concisely. For
example, logic programming has gained traction in the area of program analysis due to its flexibility in
building custom program analyzers [24], points-to analyses for Java programs [8], and security analysis for
smart contracts [21, 20].

Despite the numerous advantages, the declarative semantics of Datalog poses a debugging challenge.
Strategies employed in debugging imperative programs such as inspecting variables at given points in the
program execution do not translate to declarative programming. Logic specifications lack the notions of
state and state transitions. Instead, they have relations that contain tuples. These relations may be input
relations, such as those describing the instance of an analysis, intermediate relations, or output relations, such
as those containing the results of an analysis. Relations can only be viewed in full, without any explanation
of the origin or derivation of data, after the completion of a complicated evaluation strategy. Thus, the
Datalog user will find the results alone of logic evaluation inconclusive for debugging purposes.

When debugging Datalog specifications, there are two main scenarios: (1) an unexpected output tuple
appears, or (2) an expected output tuple does not appear. These may occur as a result of a fault in the
input data, and/or a fault in the logic rules. Both scenarios call for mechanisms to explain how an output
tuple is derived, or why the tuple cannot be derived from the input tuples. The standard mechanism for

these explanations is a proof tree. In the case of explaining the existence of an unexpected tuple, a proof tree
describes formally the sequence of rule applications involved in generating the tuple. On the other hand, a
failed proof tree, where at least one part of the proof tree doesn’t hold, may explain why an expected tuple
cannot be derived in the logic specification. These proof trees can be seen as a form of data provenance
witness, that is, an explanation vehicle for the origins of data [9, 12].

In the presence of complex Datalog specifications and large datasets, Datalog debugging becomes an
even bigger challenge. While recent developments in Datalog evaluation engines, such as Soufflé [24], have
enabled the effective evaluation of complex Datalog specifications with large data using scalable bottom-up
evaluation strategies [39, 34], unlike top-down evaluation, bottom-up evaluation does not have an explicit
notion of a proof tree in its evaluation. Therefore, to facilitate debugging in bottom-up evaluation, state-of-
the-art [27, 13, 26] techniques have been developed that rewrite the Datalog specification with provenance
information. Using these techniques, Datalog users follow a debugging cycle which allows them to find
anomalies in the input relations and/or the logic rules. In such setups, the typical debugging cycle comprises
the phases of (1) defining an investigation query, (2) evaluating the logic specification to produce provenance
witness, (3) investigating the faults based on the provenance information, and (4) fixing the faults. For
complex Datalog specifications, the need for re-evaluation for each investigation is impractical. For example,
DoopP [8] with a highly precise analysis setting may take multiple days to evaluate for medium to large-
sized Java programs. Although state-of-the-art approaches scale for the database querying use cases, such
approaches are not practical for industrial scale static analysis problems.

A further difficulty in developing debugging support for Datalog is providing understandable provenance
witnesses. Use cases such as program analysis tend to produce proof trees of very large height. For example,
investigations on medium sized program analyses in DOOP have minimal height proof trees of over 200 nodes.
Therefore, a careful balance must be struck between enough information and readability in the debugging
witnesses.

In this paper, we present a novel debugging approach that targets Datalog programs with characteristics
of those found in static program analysis. Our approach scales to large dataset and ruleset sizes and provides
succinct and interactively navigable provenance information.

The first aspect of our technique is a novel Datalog provenance evaluation strategy that augments the
intensional database (IDB) with Proof Annotations and hence allows fast proof tree exploration for all
debugging queries, without the need for re-evaluation. The exploration uses the proof annotations to construct
proof trees for tuples lazily, i.e., a debugging query for a tuple produces the rule and the subproofs of the
rule. The subproofs when expanded in consecutive debugging queries, will produce a minimal height proof
tree for the given tuple. Our system also supports non-existence explanations of a tuple. In this case, proof
annotations are not helpful since they cannot describe non-existent tuples. Thus, we adapt an approach
from [28] to provide a user-guided procedure for explaining the non-existence of tuples.

We implement the provenance evaluation strategy in the synthesis framework of Soufflé [24], to produce
specialized data structures and an interactive debugging query system for each logic specification. Our
approach is tightly integrated into the Soufflé engine, thus achieving high performance and generalizability
that no previous provenance approach is able to achieve. We demonstrate the feasibility of our technique
through the complex Java points-to framework, DOOP, running the Java DaCapo benchmark suite, which
produces tens of millions of output tuples. We demonstrate that the initial implementation of our novel
provenance method incurs a runtime overhead of 1.27x, and memory consumption overhead of 1.45x on
average. Thus, our provenance evaluation strategy is capable of processing large datasets with no performance
disadvantage compared to existing techniques, while being more flexible for answering debugging queries.

Our contributions in this work are as follows:

e a provenance evaluation strategy for Datalog specifications, defining a new evaluation domain based
on a provenance lattice which extends the standard Datalog subset lattice with proof annotations,

e the leveraging of parallel bottom-up evaluation to give minimal height proof trees, and provenance
queries for constructing minimal height proof trees utilizing proof annotations, allowing effective bug
investigation with a minimum number of user interactions,

e an efficient and scalable integration of the proof tree generator system into Soufflé, using specialized
data structures for storing proof annotations, and

11: a = new 00); new(a, 11). rl: vpt(Var, Obj) :- new(Var, 0bj).

12: b = a; assign(b, a). r2: vpt(Var, 0Obj) :- assign(Var, Var2),
vpt(Var2, 0bj).

13: ¢ = new PQ); new(c, 13). r3: vpt(Var, Obj) :- load(Var, Y, F),

14: d = new PQ); new(d, 14). store(P, F, Q),
vpt(Q, 0bj),

15: c.f = a; store(c, f, a). alias(P, Y).

16: e = d.f; load(e, d, f). r4: alias(Varl, Var2) :- vpt(Varl, Obj),

17: b = c.f; load(b, c, f). vpt (Var2, 0bj),

18: a = b; assign(a, b). Varl != Var2.

(a) Input Program (b) EDB Tuples (c) Datalog Points-to Analysis

Figure 1: Program Analysis Datalog Setup

3 13 '3
Q1 10 10
Sy £ I
| | |
@store[f] @
/ \ —
S 5 / =
T2 ~ =l
S e S
g \\ /, S 4 %A\\ S :

Figure 2: Points-to Input Diagram

e large-scale experiments using the DOOP program analysis framework with DaCapo benchmarks with
tens of millions of tuples, measuring on average 1.27x overheads for runtime and 1.45x overheads for
memory.

The paper is organized as follows: In Section 2 we motivate our provenance method and describe its use
in a real-world program analysis use case. In Section 3 we detail the theoretical basis of our method with
regards to the provenance evaluation strategy along with the provenance queries to construct proof trees for
tuples. We also demonstrate the minimality properties and present the practical solution that results from
this theory. In Section 4 we detail the implementation of our system in Soufflé. In Section 5 we present
experiments that show the feasibility of our provenance system. In Section 6 we outline related work, and
we conclude in Section 7.

2 Motivation and Problem Statement

A common approach to characterize the evaluation of a Datalog specification is through proof trees. A
proof tree for a tuple describes the derivation of that tuple from input tuples and rules. During the debugging
cycle, proof trees explain why an output tuple exists, and therefore are critical for any investigation into
anomalies. Note that potentially there could be an infinite number of proof trees for the explanation of any
given tuple. However, end users desire concise proof trees such that that the faulty behaviour of the logic
specification is revealed quickly. In this section, we describe how proof trees can be used to debug a Datalog
specification and an overview of our method for generating minimal proof trees for output tuples.

2.1 Use Case: Program Analysis
2.1.1 Points-To Analysis

We illustrate the utility of debugging via proof trees through a program analysis use case. Figure 1 illustrates
a points-to analysis implemented in Datalog. The points-to analysis resembles a field-sensitive but flow-
insensitive analysis [36]. The input relations (also known as EDB) of the logic specification are the relations
new, assign, load, and store express the input program in relational form. The relation new represent the
object-creation sites of the input program, the relation assign the assignments, and relations load/store the
read and write accesses of objects via a field. Figure la shows an input program encoded in the form of
input relations in Figure 1b. The graph in Figure 2 represents the input relations. The nodes represent
either object-creation sites or variables. The edges are object-creation sites, assignments, and load/store
instructions. The graph shows a clear separation between objects of I, with objects I; and [3. The goal is
to compute the var-points-to set in the form of the output relation vpt. The Datalog rules computing the
var-points-to set are given in Figure lc. The first rule makes the variable Var point to object Obj where
Obj is the line number of the object-creation site as an abstraction for all possible objects that could be
created by this object-creation site. The second rule shows the transfer of the var-points-to set from source
Var2 of the assignment to its destination Var. The third rule transfers the var-points-to set from the source
of a store instruction Q to the destination of a load instruction Var. The transfer is conditional depending
on whether field F of the load and store instructions match and whether the instance variable Y of the load
and the instance variable P of the store instruction alias. The last rule expresses the alias relation between
variables Varl and Var2, i.e., two variables alias if they share at least one object-creation site 0bj in their
var-points-to sets. The relations vpt and alias are the output of the analysis and are called the IDB of the
Datalog specification.

2.1.2 Minimal Height Proof Trees

The analysis example in Figure 1 computes the output relation alias that captures the alias information of
two variables. A user may investigate why a tuple (a,b) exists in the output relation alias, i.e., how the
analysis derives alias(a, b) from the input data via the rules. Intuitively, this information is contained in the
points-to input diagram (cf. Figure 2) showing that variables a and b may reach the same object. However, it
is not an explanation, as a proof tree would be, for the tuple alias(a,b) as shown in Figure 3. The proof tree
shows that alias(a,b) is derived by rule r4 using the facts vpt(a,l;) and vpt(b,l;). This outcome is expected
since it tells us that a and b point to the same object (I; in this case), and thus they may alias.

new(a,ly)
new(a, ly) " assign(b, a) vpt(a,ly) T;
vpt(a,ly) vpt(b,1q) a#b
alias(a,b)

T4

Figure 3: Full proof tree for alias(a,b)

The importance of minimality of proof tree height is shown in Figure 3, which depicts the proof tree
resulting from the assignment in line l5 in the input program. In the input program, there is a circular
assignment in lines Iy and lg caused by the flow-insensitivity of the input program, and thus the tuple
vpt(b, 1) could be derived in an arbitrary number of rule applications, as shown in Figure 4.

Thus, even for this small example, there are infinitely many valid proof trees for the tuple alias(a,b). A
provenance system ought to produce the most concise proof tree so that an end user can understand the
derivation of a tuple with the least effort.

2.1.3 Proof Tree Fragments for Debugging

Suppose a Datalog user discovers an unexpected tuple in the output, which indicates that a fault exists
somewhere in the logic specification. The aim is to investigate the root cause of this fault. Since proof trees

assign(b,a) W ”
assign(a,b) vpt(a,l1) ’
”Upt(b, ll)

T2

Figure 4: Infinitely many derivations for vpt(b,ly), resulting from the circular assignment in lines Iy and Ig
in the input program

provide explanations for the existence of a tuple, the proof tree of an unexpected tuple will help identify the
fault in the logic specification.
An example fault could be if rule r3 was altered as follows,

r3: vpt(Var, 0bj) :- load(Var, Y, F),
store(P, F, Q),
vpt(Q, 0bj),
vpt (P, 0bjl),
vpt (Y, 0bj2).

Note the condition that objects P and Y must alias now no longer holds. A minor typo may have
introduced this fault, and as a consequence of this typo, the analysis produces the extra tuple (a,e) in
relation alias. This additional tuple becomes a symptom of the fault. To diagnose this fault, the proof tree
of tuple alias(a, €) highlights the root cause of the fault.

However, in practice, a full proof tree may be too large to provide a meaningful explanation even if it is
of minimal height, and as experiments in Section 5 show, proof trees for real-world program analyses (e.g.,
Doopr) can exceed heights of 200. Thus a Datalog user may want to explore only relevant fragments of it
interactively. A fragment of a proof tree is a partial subtree, which consists of some number of levels. For
instance, we may construct fragments comprising of 2 levels to explore only parts of the proof tree that are
relevant.

We illustrate the exploration of fragments of the proof tree in Figure 5. In the figure, tuple ¢ denotes the
symptom of the fault, i.e., ¢ is an unexpected tuple in the output. The aim is to explore the proof tree for
t to find the root cause for this fault. In our example, the user follows the scent of the fault by expanding
proof tree fragments that show anomalies. This process produces a path of exploration in the proof tree.
The path of exploration discovers the root cause of the fault efficiently, without constructing and displaying
the full proof tree of an output tuple.

Concretely, we may wish to explain the tuple alias(a,e). Figure 6 illustrates the exploration of an
explanation for alias(a,e) by generating proof tree fragments of 2 levels at a time. The user generates the
first fragment and decides that vp#(e, ;) is the most relevant explanation for the fault, and continues down
this path. As a result, the root cause (for example, the erroneous rule r3) is discovered after two fragments.
This interaction mechanism also justifies the choice to minimize the height of proof trees. By doing this, we

Figure 5: Interactive exploration of fragments of a proof tree for ¢

load(e,d, f) store(c, f,a) vpt(a,ly) vpt(c, l3) vpt(d,ls)
upt(e,ly)

opt(a,l) wptle,l) afe
alias(a,e)

T4

Figure 6: Exploring the proof of alias(a,e) to find the erroneous rule r3

minimize the number of user interactions (i.e., proof tree fragments) required to discover the root cause for
an anomaly.

Note that provenance queries for databases (cf. [13, 26, 27]) have in general shorter evaluation times,
and, hence, Database approaches may re-evaluate for each provenance query the whole specification. How-
ever, for large and complex Datalog specifications, provenance queries as shown before are to be performed
interactively and promptly, i.e., in a single debugging cycle. The Datalog user may want to issue multi-
ple provenance queries in a single investigation phase of a debugging cycle. Hence, a re-evaluation of the
whole logic specification for each provenance query becomes prohibitive, and a new provenance approach for
Datalog is required.

2.2 Proof Trees and Problem Statement

We use standard terminology for Datalog, taken from [2]. A Datalog specification P consists of a set of
rules, of the form Ro(Xp) - R1(X1),. .., Rn(Xn), (X1, ..., X,). Each R;(X;) is a predicate, consisting of
a relation name R; and an argument X; consisting of the correct number of variables and constants. The
term (X1, ..., X,) denotes a conjunction of constraints on the variables in the rule. These constraints may
include, for example, arithmetic constraints (such as less than), or negation of a predicate. A predicate can
be instantiated to form a tuple where each variable is mapped to a constant. An instantiated rule is a rule
with each predicate replaced by its instantiation such that the variable mappings are consistent between
predicates and the constraints are satisfied. A set of tuples forms an instance I, and we denote the input
instance to be EDB.

Given a Datalog specification P, an input instance EDB of P, and a tuple ¢t produced by P, we want to
find a proof tree of minimal height for t. We define a proof tree as follows:

Definition 1 (Proof Tree). Let P be a Datalog specification, and let EDB be an input instance. A proof
tree 7 for a tuple t computed by P is a labeled tree where (1) each vertex is labeled with a tuple, (2) each
leaf is labeled with an input tuple in EDB, (3) the root is labeled with t, and (4) for a vertex labeled with
to, there is a valid instantiation tg :- t1,...,t, of a rule p in P such that the direct children of tg are labeled
with tq,...,t,. Moreover, the vertez is associated with p.

A proof tree for ¢ can be viewed as an explanation for the existence of ¢, by showing how it is derived
from other tuples using the rules in the Datalog specification. Importantly, in the context of Datalog, there
is a strong connection between a proof tree and the model of the specification. A model corresponds to a
set of tuples that satisfy a Datalog specification when it is viewed as a constraint system. In a proof tree,
each node corresponds to exactly one tuple from the model since each instantiation for the body of a rule
generates exactly one tuple.

To formalize the problem statement, we need to characterize proof trees of minimal height. Note that
the set of proof trees for a Datalog specification could be constructed inductively by the height of the trees.
We denote 7; to be a proof tree for tuple ¢, and T* to be the set of proof trees of height at most k. This
construction leads to a convenient description of what it means for a proof tree to be of minimal height.

Definition 2. We define the set of all proof trees inductively. Let T® = {7, |t € EDB} be the set of proof
trees for tuples in the input instance. Then, define T* in terms of TF~1: TF = {r, | t =-t1,...,t, is a
valid instantiation and Vt; : Ir;, € TF=}. Then, T = Uio T? is the set of all proof trees produced by the
specification P.

Note that each T* consists of proof trees of height at most k since if t :- t1,...,%, is an instantiation of
a rule, then the height of the proof tree for ¢ is equal to the maximum height of the proof trees for ¢4, ..., ¢,
plus 1. By defining the set of proof trees inductively, a proof tree of minimal height for a given tuple ¢ has
height given by

min {k > 0|3, € T"}.

Intuitively, this means that a proof tree for a tuple ¢ is of minimal height if there does not exist another
valid proof tree with a smaller height. We emphasize that a valid proof tree must exist since we have assumed
that tuple is in the IDB of the Datalog specification and therefore its existence can be proved. Based on this
inductive construction of proof trees, we reduce the problem of generating a fragment of a proof tree into
the following incremental search problem.

Problem statement: Let P be a Datalog specification, and I be the instance computed by P. Then,
given a tuple ¢ € I, find the tuples ¢1,...,t, that form the direct children of ¢ in a minimal height proof tree
for ¢, as depicted in Figure 7. Denote t1,...,t, to be a configuration of the body of the corresponding rule.

————————— 2 e — -y -

vy, Ny min h

Figure 7: One level of a proof tree of minimal height for ¢

Note that we could recursively construct the subtrees rooted at each t;, which form valid proof trees
for these tuples. Thus, this recursive construction solves the original problem of constructing a fragment
of the proof tree of minimal height. Once a certain number of levels have been constructed, or if the only
remaining leaves are in the EDB (characterized by having a proof tree consisting of only a single node), then
the fragment is complete.

3 A New Provenance Method

A simple solution to this problem might be to generate a minimal height proof tree by brute-force searching
for matching tuples and return the direct children of the root node. However, this is an unfeasible approach
for real-world problems where there may be millions of tuples, and there are also no guarantees that the
produced proof trees are of minimal height. Moreover, the two main evaluation strategies for Datalog,
bottom-up and top-down are unsuitable for solving this problem on their own. Bottom-up evaluation is an
efficient method for generating tuples but does not store any information related to proof trees. On the other
hand, top-down evaluation does compute proof trees as part of its execution, but there are no guarantees for
minimality of height. Additionally, to prove the existence of a particular tuple requires proving the existence
of every intermediate tuple up to the input tuples, and thus the problem of generating only fragments of proof
trees cannot be solved by top-down. Thus, we present a hybrid solution for generating proof trees, consisting
of a provenance evaluation strategy based on bottom-up evaluation, plus a debugging query mechanism to
construct proof trees.

We summarize the system in Figure 8. The Datalog specification and input tuples (EDB) are the input
into the system. A pre-processing step of provenance Datalog evaluation generates a set of tuples (IDB)
alongside proof annotations for these tuples. The annotated tuples form the input into the interactive proof
tree generator system.

The proof tree generator is at the core of the interactive exploration of proofs for tuples. A user queries
for a fragment of a proof tree, e.g., two levels of a proof tree for vpt(b, 11), and the system returns the

corresponding result. This system can answer any number of queries, and the user can query for any
fragment of the proof tree for any tuple. As previously mentioned, this allows the user to interactively
explore the proof for a tuple and find a meaningful explanation for a tuple.

The provenance evaluation strategy resembles a pre-computation step of the Datalog. The evaluation
is performed only once, but the IDB with proof annotations can subsequently answer any debugging query
using the same IDB resulting from evaluation. The ability to answer any debugging query without re-
evaluation is an advantage over other selective provenance systems [13, 27], where the query is given prior
to evaluation, which is then instrumented based on the query, and thus evaluation must be performed for
each different query.

Pre-processing Datalog evaluation Proof tree exploration
!] |

i+
Proof Tree
Generator

\
1

Proof
Anno-
tations

Provenance
Evaluation

Tree
Frag-

ment

Figure 8: Synthesized Proof Tree Generator system

3.1 Standard Bottom-Up Evaluation

The basis of our approach is the standard bottom-up evaluation strategy for Datalog specification [2]. The
computational domain of standard bottom-up evaluation is the subset lattice consisting of sets of tuples,
denoted instances I. The naive algorithm for evaluation is based on the immediate consequence operator,
T'p, which generates new tuples by applying rules in the Datalog specification to tuples in the current
instance.

Fp(I)=TU{t|t :-ty,...,t,is a valid instantiation of a rule in P with each ¢; € I'}

The result of Datalog evaluation is attained when I'p reaches a fixpoint, i.e., when I'p (I) = I. Note
that this evaluation appears closely related to the inductive construction of proof trees, and indeed the set
of tuples represented by 1" is equal to the set of tuples generated by the i-th application of I'p.

However, this naive evaluation will repeat computations since a tuple computed in some iteration will
then be recomputed in every subsequent iteration. Therefore, the standard implementation of bottom-
up evaluation in real systems such as [24, 40] is semi-naive. Semi-naive evaluation contains two main
optimizations over naive bottom-up evaluation:

1. Precedence graph optimization: the Datalog specification is split into strata. Firstly, a precedence
graph of relations is computed, then each strongly connected component of the precedence graph forms
a stratum. Each stratum is evaluated in a bottom-up fashion as a separate fixpoint computation in
order based on the topological order of SCCs. The input to a particular stratum is the output of the
previous strata in the precedence graph.

2. New knowledge optimization: within a single stratum, the evaluation is optimized in each iteration
by considering the new tuples generated in the previous iteration. A new tuple is generated in the
current iteration only if it directly depends on tuples generated in the previous iteration, therefore
avoiding the recomputation of tuples already computed in prior iterations. We describe this process
in further detail in Section 4.1

With these two optimizations, semi-naive performs less repeated computations than the naive algorithm,
however, our method for generating proof trees must now be tailored to semi-naive evaluation.

new(a,ly) .
assign(b, a) vpt(a,ly) Tl)
2
vpt(b, 1) “ (vpt(b,11),2) “ vpt (b, 11)

Figure 9: Connecting a tuple to a proof tree via a height annotation

Another essential extension of Datalog is negation, and the standard semantics for negated Datalog is
stratified negation [2]. A negated predicate is denoted with a ! symbol, for example lvpt(Var, Obj) denotes the
negation of vpt(Var, Obj). Semantically, a negated predicate evaluates to true if no matching tuples exist in
the instance. With stratified negation semantics, a negated predicate is only allowed if the contained variables
exist in positive predicates elsewhere in the body of the rule (a condition also known as groundedness), and
if the corresponding relation does not appear in a cycle in the precedence graph. During evaluation, the
stratification of the precedence graph is carried out in a way such that the negated relations can be treated
as input into a stratum, and a negated predicate is treated as a constraint, which holds if no corresponding
tuple exists in the input instance.

3.2 Provenance Evaluation Strategy

These standard bottom-up evaluation semantics are extended to compute a minimal height proof tree for
each tuple. Our extended semantics store proof annotations alongside the original tuples. In particular, for
each tuple, the annotations are the height of the minimal height proof tree, and a number denoting the rule
which generated the tuple. By using this extra information, we can efficiently generate minimal height proof
trees to answer provenance queries (see Section 3.3).

In the context of semi-naive evaluation, and in particular the precedence graph optimization, we describe
the provenance evaluation strategy here for a single fixpoint computation (i.e., a single stratum). The
resulting correctness properties translate directly to the evaluation of the full Datalog specification since
correctness holds for every stratum in the evaluation.

The rule number annotation is easily computed during bottom-up evaluation. With bottom-up evalua-
tion, a new tuple ¢ is generated if there is a rule pi, : R(X) - R1(X1),..., Rn(Xn), ¥(X1,...,X,) and a set
of tuples t1,...,t, such that ¢t :- t1,...,t, forms a valid instantiation of the above rule. If this is the case,
we say that the rule firing of py generates ¢, and thus the identifier p (t) = k is stored as the rule number
annotation for ¢. In this way, for each tuple, we track which rule is fired to generate that tuple.

However, the height annotations are more involved and relate closely to the semantics of bottom-up
evaluation. Thus, we must develop a formalism for the height annotations, to ensure that it correctly
computes the height of the minimal height proof tree for each tuple. To formalize tuples with height
annotations, we define a provenance lattice as our domain of computation, which extends the standard
subset lattice with proof annotations. An element of the provenance lattice is a provenance instance.

Definition 3 (Provenance Instance). A provenance instance is an instance of tuples I along with a function
h:I—>N

which provides a height annotation of each tuple in the instance. We denote a provenance instance to be

the pair (I, h).

The aim of these height annotations is to connect a tuple to its proof tree, as depicted in Figure 9. The
middle value is a tuple along with its height annotation, which is an example of an augmented tuple in a
provenance instance. The corresponding proof tree on the right has height matching this annotation.

Similar to the subset lattice of standard bottom-up evaluation, the domain of provenance evaluation
should also form a lattice, in our case, based on the subset lattice of standard bottom-up evaluation, but
with elements being provenance instances rather than instances. We denote this to be the provenance lattice
L, where elements are provenance instances. The ordering C of elements in the lattice is defined by:

(Il,hl) C (Ig,hg) <= [CI,and Vt € I; : hl(t) > hg(t)

Intuitively, this ordering specifies that an augmented instance (I, h;) is ‘less than’ another augmented
instance (I3, hs) if all tuples in I also appear in I, with larger or equal height annotation. Therefore,
moving ‘up’ the lattice towards the top element results in augmented instances with more tuples and smaller
height annotations. This property guarantees the minimality of these height annotations since a bottom-up
Datalog evaluation is equivalent to applying a monotone function to move ‘up’ a lattice.

The property that C a valid partial order is essential to demonstrate that standard properties of Datalog
evaluation hold.

Lemma 1. C is a partial order
Proof. We show that each of the three properties of a partial order hold.
e Reflexivity: (I,h) C (I,h) since I C T and Vi € I : h(t) = h(t)

L] Anti—symmetry: If (Il,hl) E (IQ, hg) and (Ig,hg) E (Il, hl), then Il Q Ig and IQ Q Il (SO Il = Ig), and
YVt € I : hi(t) > ho(t) and Vt € I5 : ho(t) > hq(t). Since I; = I, we conclude that Vt € I : hi(t) =
ha(t).

Thus, (I1,h1) = (12, h2).

e Transitivity: If (I1,h1) E (I2, he) and (I2, he) T (I3, h3), then we have I; C Iy C I3. Also, we have
vVt € Il : hl(t) 2 hg(t), and Vit € IQ : hg(t) 2 hg(t) Since Il Q Ig, we have Vt € Il : hl(t) Z hg(t) 2
hs(t).

Therefore, we have I; C I3 and V¢ € I : hy(t) > hs(t), and thus (I, h1) C (I3, hs).
Thus, this demonstrates that C is a partial order. O

In a similar fashion to the immediate consequence operator I' p operating on the subset lattice of Datalog
instances, provenance evaluation is achieved with a consequence operator 7p operating on the provenance
lattice. The result of evaluation is reached when Tp reaches a fixpoint, i.e., when Tp ((I,h)) = (I,h). The
main property Tp is that once a fixpoint has been reached, the proof tree height annotations are minimal,
and they correspond to the heights of the smallest height proof trees.

The consequence operator Tp is defined in terms of the I'p operator:

Definition 4 (Consequence operator). The consequence operator, Tp, generates a new provenance instance:
To ((Lh) = (Tp (1), 1)
where h' is defined as follows. For any tuple t € T'p (I), let
Gt ={(t1,...,tn) | t - t1,...,tn is a valid rule instantiation with each t; € T'p (I)}

be the set of all configurations of rule bodies generating t. Note this may be empty in the case of EDB tuples.
Then,

mingec, {maxy,cq {h (t;)} + 1} otherwise

The generation of new tuples behaves in the same way as I'p. To illustrate the height annotations, consider
the rule instantiation vpt(b,l;) :- (assign(b,a),0), (vpt(a,ly1),1), with height annotations written alongside
body tuples for convenience. From this rule instantiation, we would generate the tuple vpt(b, l;) with height
annotation max (0,1)+1 = 2. However, the instantiation vpt(b,l1) :- (load(b, ¢, f),0), (store(c, f,a),0), (vpt(a,ly),1), (alias(c,
would also generate vpt(b, 1), but with height annotation max (0,0, 1,2)41 = 3. The resulting instance after
applying Tp will contain only the smaller annotation, and thus the resulting provenance tuple is (vpt(b, 1), 2).
Also, note that this semantics allow for the update of the height annotation for a tuple t € I. If
Tp(I,h) = (Tp(I),n) results in A’ (t) < h(t), then we say that the height annotation of ¢ has been
updated. An update may happen if 7Tp generates new tuples which form a valid configuration of a rule body
generating ¢, with lower height annotations than a previous derivation.

10

We illustrate this definition of provenance evaluation strategy using the running example. We denote
(t,h) to be a tuple t with height annotation h. Assume, for the sake of illustration, that the input instance
is computed from a previous fixpoint, and thus has different height annotations, which may be the case with
a single fixpoint in semi-naive evaluation. Note that for the full Datalog specification, all input tuples will
have a height annotation of 0. Figure 10 shows the derived relations under the fixpoint computation with the
provenance evaluation strategy. Importantly, in iteration 3, the height annotation for vpt(b,{1) is updated
as a result of a new derivation using b = ¢.f; c.f = a; is computed, with lower height annotation than
the previous derivation which used b = a;. This demonstrates that annotations of tuples may be updated
after they are initially computed, which is essential to maintain minimality.

Input:

{(new(a,ly),0), (assign(b,a), 6), (new(c,l3),0), (new(d,ly),0),
(store(c, f,a),0), (load(e,d, f),0), (load(b, ¢, f),0), (assign(a,b),0)}

Fixpoint iterations:

i9: 0

i1 {(vpt(a, 1), 1), (vpt(c,l3), 1), (vpt(d, la), 1)}

iz : {(vpt(a, 1), 1), (vpt(c,l3),1), (vpt(d, ls), 1), (vpt(b, 1), 7)}
is : {(vpt(a,11), 1), (vpt(c,l3), 1), (vpt(d,la), 1), (vpt(d,11),3)}
iq : {(vpt(a,l1),1), (vpt(c,l3), 1), (vpt(d,ls), 1), (vpt(b,11),3)}

Figure 10: IDB relation vpt in each iteration of the fixpoint computation for the example Datalog specification

It remains to be shown that the provenance evaluation strategy is correct, i.e., that 7p terminates and
results in the same set of tuples as I'p. Additionally, we must show that the height annotations resulting
from provenance evaluation strategy is minimal.

Lemma 2. Tp computes the same tuples as I'p at fixpoint, i.e.
1. 3k s.t. Tp (TE (I h)) = TE (I,h), and
2. TH(I,h) = (T% (I), h*) for some level annotation function h*

Proof. By definition, Tp generates tuples in the same fashion as I'p. Since I'p always reaches a fixpoint, say
after [iterations, i.e., I'p (I', (1)) =T’ (I), we have

Ti (I 1) = (T (1), 1)

Any further applications of Tp do not change the set of tuples since I'p has already reached a fixpoint. Thus,
after [iterations, Tp computes the same tuples as I'p.

If there exists a & > [such that Tp reaches fixpoint after k iterations, then the theorem is proved.
Consider applying 7p to (I‘lp D, hl). The set of tuples will not change. For any tuple ¢ € I'}, (), the height
annotation can only decrease as a result of applying Tp since Tp takes the minimum height over all rule
configurations generating ¢ and h! (t) also must result from such a configuration.

The height annotation is bounded from below by 0 since EDB tuples have non-negative annotations,
and each subsequently generated tuple has increasing annotation. Therefore, applying 7p monotonically
decreases the height annotation of ¢, which is bounded from below, so eventually, a fixpoint must be reached.
Since this holds for all tuples in T'% (I), Tp must reach a fixpoint after k& > [iterations. O

We have established that the provenance evaluation strategy terminates and computes the same set of
tuples as standard bottom-up evaluation. It remains to be shown that the proof height annotations are
minimal, i.e., that they reflect the real height of the minimal height proof tree for each tuple, and also that

11

they correspond to real proof trees. The property of minimal height annotations is the major result of this
section since it demonstrates that our method generates proof trees of minimal height.

Theorem 1. Let T} ((I,h)) = (T% (I),h*) be the resulting instance at fizpoint of Tp. Then, for any
arbitrary tuple t € T'% (I),

1. there does not exist any sequence of tuples ti,...,t, such thatt :- t1,...,t, is a valid instantiation of
a rule in P with each t; € T% (I) and h(t) > max{h (t1),...,h(t,)} +1, and

2. there is a valid proof tree for t with height h* (t)

Proof. The proof for part 1 is by contradiction. Assume such a sequence of tuples ¢y, . ..,t, exists. Consider
applying Tp to the instance.

Tp (D% (I),0%) = (T} (1), hFHY)

with A* () = mingeq, {maxy,eq {h* (t;)} + 1} by definition of Tp. The set of tuples does not change
since we assume that a fixpoint of I'p has already been reached.

Since the sequence tq,...,t, is a valid rule body configuration generating t, it is an element of G, and
therefore is considered when updating the height annotation of ¢. Since the height annotation resulting from
this sequence is lower than h* (¢), the update will happen, and thus a fixpoint has not yet been reached.

Thus, we have a contradiction, and so such a sequence producing a lower height annotation cannot exist.

The proof for part 2 is by induction on the height annotation of t. Let h = h* (t) for simplicity.

If h = 0, then t is in the EDB. In this case, the proof tree with a single node corresponding to ¢ is a
valid proof tree. Otherwise, for h > 0, assume the hypothesis is true for all tuples with height annotation
less than h. By definition of Tp, there exists a sequence t :- t1,...,t, such that

h=max (h* (t1),...,h" (t,)) + 1

By the assumption, there are valid proof trees for each t; of height h* (¢;). We can generate a proof tree
as follows:

t1 tn
t

where each ... represents the subtree forming a valid proof tree for each ¢;. This resulting proof tree has
height

max (A" (t1),..., A" (tn)) +1
which equals h. This forms a valid proof tree for ¢ of height k¥ (t). O

We have shown the correctness and minimal height annotations of the provenance evaluation strategy
for a single fixpoint computation. To evaluate a stratified Datalog specification in a semi-naive fashion, each
stratum is evaluated as a separate fixpoint using the provenance evaluation strategy. The correctness of the
evaluation of a full Datalog specification follows from the correctness of each fixpoint evaluation.

3.2.1 Complexity of Provenance Evaluation Strategy

In this section, we discuss the complexity of the provenance evaluation strategy. We characterize this
complexity by the number of rule firings during evaluation. With standard bottom-up evaluation, we say
that a rule is fired if it generates a new tuple. Therefore, for each tuple generated by the Datalog specification,
there is exactly 1 rule firing. However, with the provenance evaluation strategy, a rule is also fired if it results
in an update for the height annotation of a tuple. Therefore, we consider the number of updates performed
during evaluation of the specification as a characterization of the extra amount of work done by provenance
evaluation compared to standard bottom-up evaluation.

12

Theorem 2. An upper bound for the number of updates performed is O (n x max h), where maxh denotes
the mazimum attained height annotation for any tuple during evaluation and n the number of tuples generated
by the specification.

Proof. To prove this, we need to show two things: (1) that it is a true upper bound, and (2) that it is a
tight bound.

To prove (1), consider a tuple ¢ attaining a height annotation of maxh. Its annotation may only be
updated if there is a valid derivation for ¢ with a lower height. In the worst case, in each update, we reduce
the annotation by 1, and thus we must perform max h updates to t. Considering all tuples produced by the
specification, we may update all tuples in this way in the worst case, and therefore, we have O (n x max h)
updates.

To prove (2), we show an example attaining the upper bound, in Figure 11. In this example, the maximum
height annotation is 2k, and the tuple reach(a, e) will be updated & times as new derivations are computed
using nodes in the bottom chain. Furthermore, each tuple reach(a, z) corresponding to nodes z in the ‘leg’
must be updated O (k) times as the tuple reach(a,e) is updated. Since there are k nodes in the leg, each
of which is updated O (k) times, we have in total O (k?) updates, which coincides with the upper bound.
Therefore, this upper bound is tight. O

reach(a, N) :- reach (a, M), edge(M, N).

Figure 11: Example Datalog specification demonstrating the upper bound is tight. The label on each edge
denotes the height annotation of that tuple.

We also note that max h cannot exceed n since in each iteration of Tp where a new tuple is generated, the
height annotation of that tuple cannot exceed the maximum height annotation in the previous iteration, plus
1. If no more tuples are generated, then the height annotation for any tuple may not increase. Therefore, by
generating a new tuple, we increase max h by at most 1, and therefore this value is at most the total number
of tuples generated.

Therefore, in the worst case, the provenance evaluation strategy may have to do a quadratic amount of
extra work compared to standard bottom-up evaluation. However, as real-world examples (see Section 5)
show, such instances rarely occur, and scalability is maintained in most real-world cases.

3.3 Proof Tree Construction by Provenance Queries

Given a provenance instance (I, h) computed by the provenance evaluation strategy, and a tuple ¢ € I, the
aim is to construct one level of a minimal height proof tree for . We utilize the height annotations h and rule
number annotations that are stored alongside the instance during bottom-up evaluation. We use a top-down
approach for proof tree construction, starting from a query tuple and recursively finding tuples that form a
valid instantiation of a rule generating the query tuple. Denote h (t) to be the height annotation, and p (t)
to be the rule corresponding with the rule annotation for .

The result of this search would be a sequence t1,...,t, such that ¢t :- ¢1,...,t, is a valid instantiation
of p(t) leading to a minimal height proof tree. A pre-requisite is that the provenance instance (I, h) is the
result of bottom-up evaluation, and since all possible tuples are computed during this evaluation, we know
that each t1,...,t, exists in I. Thus, this problem would be solved by searching for tuples in the already
computed instance I.

13

However, we must constrain this search such that the result is part of a proof tree of minimal height
since there may be multiple valid configurations for the body of p (¢), and some configurations may not lead
to minimal height proof trees. These constraints result from the annotations from bottom-up evaluation.
From Theorem 1, there exists a configuration for the body which leads to a minimal height annotation for
the head, and the height annotation for tuple ¢ is generated as

h(t) = max (h(ty),. ... h(ty)) + 1

by the consequence operator. Therefore, a configuration leading to the minimal height proof tree is ¢1, ..., ¢,
where h (t;) < h(t) for each ¢;. Note that there may be multiple configurations leading to a proof tree of
minimal height, and any of these configurations is a valid result for the problem.
The problem can be phrased as the following goal search. Given a tuple ¢, and arule p (¢) : R(X) :- R1(X1),
Ry (X)), (X, ..., X,) generating ¢, we want to find tuples t1,...,t, € I such that ¢ :-¢1,...,¢, is a
valid instantiation of p (t), with proof annotations of each ¢; satisfying the former constraints.

? = Ri(X1), . Ro(Xn), 0(X1,. .., X)), matches(t, X1, ..., Xn), h(R1(X1)) < h(t), ..., h(Rn(Xn)) < h(t)

The condition matches(t, X1,. .., X,) denotes that for a result ¢1,...,t,, the variable mapping from each
X, to t; is consistent with the variable mapping from X to ¢. This is related to the problem of unification
in Prolog, and in our context is crucial to ensure that the resulting configuration forms a valid instantiation
of p.

Example: We illustrate this construction using the running example. The query is for the tuple
alias(a,b). From the initial bottom-up evaluation, the height annotation is h (alias(a,b)) = 4, and the
generating rule is r4 : alias(Varl,Var2) :- vpt(Varl, Obj),vpt(Var2, Obj).

The search is for tuples forming a configuration for the body of ry, vpt(Varl, Obj), vpt(Var2, Obj) sat-
isfying the constraints

Varl = a,
Var2 =0,
h (vpt(Varl, Obj)) < 4,
h (vpt(Var2,0bj)) < 4

In this example, the first two constraints corresponds with matches(t, X1,...,X,), and the last two
constraints enforce the conditions for proof height annotations. Therefore, the goal search is

? - opt(Varl, Oby), vpt(Var2,0bj), Varl # Var2,Varl = a,Var2 = b,
h (vpt(Varl, Obj)) < 4, h (vpt(Var2,0bj)) < 4

In this case, we find the tuples vpt(a,l;), vpt(b,l;), which form the next level of the proof tree:

’Upt(a, ll) ’l}pt(b, ll) a 7{ b T4
alias(a,b)

This goal search can be seen as a special case of Datalog, denoted 0-IDB Datalog. The properties of
0-IDB Datalog are:

e There are no IDB relations, and every possible tuple is in EDB
e There is a single goal search query
e The evaluation terminates as soon as the first solution for the goal search is found

Our method for searching for body tuples fits into this framework. The IDB resulting from the provenance
evaluation strategy forms the EDB of our 0-IDB program, and the search for matching body tuples is the
single goal search query.

The property that the evaluation terminates as soon as the first solution is found is desirable for efficiency
reasons. Our goal search contains constraints to ensure that any result forms a valid configuration for a
minimal height generator, and therefore the first solution found is sufficient to solve our problem.

14

The complexity of the goal search depends highly on the data structures used in the implementation.
We assume a fully (B-Tree) indexed nested loop joins. Therefore searching for a tuple for a rule with an m
nested join, requires O(log™ n) time. Given a proof tree height of k, we need O(klog™ n) = O(log™ n) to
traverse a single branch.

3.4 Provenance for Non-Existence of Tuples via User Interaction

The provenance evaluation strategy of the previous section explains the existence of tuples in relations.
However, the non-existence of tuples may also indicate faults in either the input relations and/or in the
rules.

Therefore, we extend our approach explaining on why a tuple cannot be derived, i.e., if the user expects
a tuple, but it does not appear in the IDB, the user may wish to investigate why the tuple is not produced.
Alternatively, a user may want to understand why a negated body literal holds in a rule during the debugging
process.

A non-existent tuple is characterized by every proof tree for the tuple failing to be constructed. The
source of failure may be (1) tuples for the construction not being in the EDB/IDB, and/or (2) the constraints
of rules not being satisfied. Given the potentially infinite number of failing proof trees, we avoid automatic
procedures that represent a serious technical challenge and are not guaranteed to discover a failed proof tree
containing the root cause of the fault. In practice, without a formal description of the root cause of the
fault, the provenance system cannot decide which failed proof tree is most suitable!.

Hence, in our system, we take a pragmatic, semi-automated approach which is inspired by existing work
such as [27, 28]. Our system leverages user domain knowledge and allows user interactions to incrementally
guide the construction of a single failing proof tree. Each user interaction produces a failing subproof, or one
level of the proof tree. This failing proof tree provides a succinct representation of valuable information for
a Datalog user to discover on why an expected tuple is not being produced by the specification and does not
burden the user with too much unnecessary information.

Formally, we define the problem as follows: given a provenance instance (I, h) computed by the provenance
evaluation strategy, a tuple ¢ ¢ I, and a rule p : R(X) - Ri1(X1),..., Rn(Xn), (X1, ..., X,) with head
relation matching ¢, we aim to find a configuration ti,...,t, for the body of p, such that either: (1) at
least one t; ¢ I or, (2) the constraints (X, ..., X,,) are not satisfied. Such a configuration forms a failing
subproof, and recursively constructing subproofs results in a full failed proof tree. Note that it would be
impossible to find a configuration where all tuples ¢; € I and constraints (X1, ..., X,,) hold since the prior
assumption is that ¢ ¢ I. If such an instantiation cannot be found, then the tuple ¢ can be generated by the
Datalog specification, and thus ¢ € I.

For showing the non-existence of a tuple, the provenance system supports the Datalog user in constructing
the failing proof tree in stages. The debugging query for non-existence has three user interaction steps that
are repeated until the root cause of the fault is found. The user interaction steps are as follows:

1. the user defines a query for the non-existence of a tuple,
2. the user selects a candidate rule from which the tuple may have been derived,
3. the user selects candidate variable values of unbound variables in the rule.

The system displays the rule application in the failing proof tree indicating the portions of the rule that
fail (i.e., at least one literal / constraint must fail) and the portions of the rule that hold.

The Datalog user can continue the query with the newly found failing literals guiding the system to find
the root cause of the fault. This process is semi-automated since the nature of the fault is known by the
Datalog user only.

Example: Consider the example from Figure 1 for which we want to query the non-existence of the tuple
vpt(b,ly). In the first user interaction step, the Datalog user queries for an explanation for the non-existence
of the tuple vpt(b,l4). Then, the Datalog user selects an appropriate rule such as rule 5.

1Proof annotations such as introduced in the previous section can only describe existent tuples in the IDB. It is impossible
to consider such annotations for tuples that are not produced by the specification.

15

The system can then produce a partial instantiation for the body of the rule, where variables matching
the head are replaced by concrete values from ¢ such as,

opt(b,ly) - assign(b, Vars),vpt(Vars,ls)

In the last user interaction step, the Datalog user selects instantiations for the remaining free variables
in rule ro. For example, the Datalog user may choose the value d for the free variable Vars.

vpt(b,ly) :- assign(b,d),vpt(d,ls)

Given the instantiated rule, the provenance system will evaluate which portions of the subproof fail and
which portions hold. With that information, the Datalog user can continue the exploration of the failing
portions to find the root cause of the fault. A simple colour labelling helps the Datalog user to indicate
which portions fail and hold, respectively.

assign(b, d) X vpt(d,ls) v
upt(b, ly)

In the above example, the red color and X denotes the non-existence of the tuple assign(b,d) in the IDB,
i.e., a failing portion of the proof tree. The blue color with v indicates that vpt(d,l4) holds.

In summary, our provenance system constructs a single failed subproof to explain the non-existence of a
tuple. The construction of the failed subproof is guided by the Datalog user to ensure the answer contains
a relevant explanation, given the infinitely many possible failed proof trees. The semi-automatic proof
construction approach supports the Datalog user by highlighting which portions of the subproof hold and
fail, respectively to guide the exploration.

T2

3.5 Alternative Proof Tree Shapes

Our debugging strategy introduces an interactive system to explore fragments of proof trees to pinpoint faults
in the Datalog specification. Therefore, we wish to minimize the number of user interactions required to find
the fault. For this aim, minimal height proof trees are critical for reducing the number of user interactions in
the fault investigation phase. The utility of this approach is backed by several user experiences in industrial-
scale applications (see cf. Section 7.1.2 [38]).

While generating proof trees of minimal height is useful for users, in principle our framework is more
general and can support a variety of metrics that may be beneficial in future applications. In this section,
we outline general properties of proof tree metrics by having the following properties for function h:

1. The codomain of A must have a partial ordering C, so that an update mechanism can be well defined.
It is important that the annotation for a tuple can be updated if the same tuple is generated again with
smaller (according to C) annotation. This ensures that the resulting annotations are always minimal
since tuples will continue being updated with smaller annotations until a fixpoint with annotations is
reached.

2. The metric must be compositional, i.e., if ¢t is generated by a rule instantiation t :- t1,...,%,, then
h(t) = f(h(t1),...,(ts)). The importance of this property is two-fold. Firstly, it ensures that the
values of the annotations can be computed during evaluation of the Datalog specification, by encoding
f as a functor in the transformed Datalog specification. For example, a rule may be transformed to be
R(X, f(h1,...,hy)) - Ri(X1,h1),..., Rp(Xp, hy). to compute the value of the annotation.

Secondly, the compositional property is important for the reconstruction of the proof tree. In the
backwards search for a body configuration that may produce the head tuple, f may be encoded as a
constraint. For example, a backwards search may be

? - Ri(X1),..., Rn(Xp), v(Xy, ..., X)), matches(t, X1,...,Xp),h(t) = f (R(R1(X1)), ..., h(R,(X,)))

where the last constraint ensures that the tuples found from the search correctly generate ¢ with
matching annotations.

16

3. The metric must be monotone and bounded, i.e., h (¢;) C h(t) for all 1 <14 < n, and bounded, i.e., there
is a minimum value ¢ such that ¢ C h(t) for any tuple ¢. This property ensures that the provenance
evaluation strategy terminates. Monotonicity ensures that with each rule application, the annotation
converges towards the minimum value ¢, and once it reaches ¢, then termination must occur.

If a given metric satisfies the above properties, then it can be used instead of proof tree height in our
framework. Examples of such metrics could be the size of proof trees by number of nodes, or a sequence of
k proof tree heights describing the smallest & proof trees for each tuple. Therefore, our approach could be
applicable to wider applications than debugging. We leave the integration of other metrics in our provenance
evaluation strategy as future work.

4 Implementation in Soufflé

In this section, we describe the implementation of our provenance system in Soufflé [24]. Souffié [1] is an
open-source system that is available under the UPL license and is implemented in C++. Soufflé is a parallel
Datalog engine designed for shared memory, multi-core machines, synthesizing highly performant parallel
C++ code from Datalog specifications.

Our provenance evaluation strategy and proof tree construction system are tightly integrated into the
Souflé engine?. Through this tight integration in Souffé, we are able to achieve high parallel performance
for the provenance evaluation, and enable a single evaluation phase to answer multiple debugging queries.
In contrast, previous approaches [27, 13, 26] implement a Datalog re-writing scheme, and simply evaluate
the re-written Datalog in an existing engine.

The Soufflé synthesizer performs a series of specialization steps based on Futamura projections [17], which
synthesize a C+-+ program with the same semantics as the Datalog specification. The main specialization
step is the compilation of Datalog into an intermediate representation called Relational Algebra Machine
(RAM) which has imperative and relational algebra elements to perform simple relational algebra operations
to compute fixed-points for semi-naive evaluation. The RAM representation of a Datalog specification is in
turn compiled into C++ code. The resulting C++ code implements a specialized semi-naive algorithm for
the rules in the Datalog specification that have similar performance to a hand-written program [24, 3]. In
the following, we discuss the implementation of semi-naive evaluation [2] in Soufflé and discuss subsequently
how the synthesised semi-naive evaluation is replaced by the provenance evaluation strategy. Semi-naive
evaluation avoids re-computations of tuples by assuming that new tuples can only be deduced from new
tuples in the previous iteration. This is achieved by creating a new and delta version of each relation. The
new and delta version of a relation store the tuples found in the current iteration and the previous iteration,
respectively. For example, with a rule Ro(Xg) :- R1(X1),..., Rn(Xn),¥(X1,...,X,), each relation Ry is
transformed to become a set of relations for each iteration i:

i i i
Ry, newp, , A,

where R} stores all the tuples for relation Ry which are computed up until iteration i, while ﬁ%k stores only
the tuples in Ry computed in iteration ¢, without any tuples computed in previous iterations. The relation
newﬁ%k is an intermediate relation used to compute the A relations. The essential optimization, compared to
naive evaluation, is to realize that in iteration ¢ + 1, a new tuple is only generated if it directly depends on
a tuple generated in iteration ¢. If this condition doesn’t hold, i.e., if it depends on knowledge generated in
prior iterations, then the tuple would also have been generated in a previous iteration, and thus generating
it again would be a redundant computation. Thus, a tuple is only generated in iteration ¢ + 1 if it depends
on a A’ relation. This constraint is enforced by transforming the original rule to a set of new Datalog rules

20ur provenance evaluation strategy is not specific to Soufflé — it can be integrated into any bottom-up evaluation Datalog
engine.

17

which perform semi-naive evaluation:

newgl(Xo) = AR (X)), Ra(X2), ..o, Ro(Xn), ¥(X1, ..., X0)
newin)l(XO) = RU(X), . AR (Xk)s - Ru(X0), (X, ., X)
new 1(Xo) - Ri(X1), ..., Rn-1(Xn—1), Ak, (Xn),%(X1,..., X0)

Thus, newggl contains tuples of Ry which depend directly on tuples generated in iteration i. The relation

A;Zl is computed as

i+l _ i+l _ pi
AR, =newp, 0

where the relations are viewed as sets of tuples and — denotes set minus. Thus, Azgol contains only tuples

generated in iteration ¢, and no tuples generated in previous iterations. The relation Rfﬁ'l denotes all tuples
generated in iterations 0,..,7 + 1, and is computed as the union

R -
Ry™ = Ry UAYR

With these auxiliary relations, the final result for the relation Ry is the final R} once a fix-point is
reached, i.e., the result of the Datalog specification has stabilized. Note that Soufflé evaluates the Agl
relation by computing the tuples without an explicit set minus operation since an existence check de-
termines whether the tuple already exists in R’ relation before it is inserted into Agl. For example,
Figure 12 depicts a snippet of a Souflé RAM program, part of the semi-naive evaluation of the rule
ro : vpt(Var,Obj) :- assign(Var,Var2),vpt(Var2,0bj). The join is performed via a loop nest iterating
over tuples of relations efficiently via indexes [38]. Line 2 computes the new tuples to be added to the Af,;tl
relation, where the NOT IN operation is an existence check to ensure the generated tuple does not already
exist in the vpt? relation.

1 SCAN assign AS tO
2 SEARCH @delta_vpt AS t1 ON INDEX t1.cO=t0.y WHERE (t0.x,t1.c1) NOT IN vpt
3 INSERT (t0.x, tl.cl) INTO @new_vpt

Figure 12: Existence check prior to inserting

4.1 Implementing Provenance Evaluation Strategy

The main challenge of integrating the provenance evaluation strategy is to allow the synthesis to be aware of
proof annotations. In particular, the semi-naive evaluation machinery must be replaced by the provenance
evaluation strategy as described in Section 3.2 to handle the proof annotations. Another critical part of this
machinery is the synthesis of data structures [38, 25] for relations that are specialized for the operations in
the program. The synthesized data structures have to be extended for proof annotations as well, enabling
an update semantics in Datalog for the annotations.

For the provenance evaluation strategy, we need to amend relations by extra attributes to contain the
proof annotations. We utilize the synthesis pipeline of Soufflé by introducing two provenance attributes for
each relation. The first attribute represents the rule number of the rule which generated the tuple, and the
second attribute represents the proof tree height. These two new attributes are introduced for each relation
at the syntactic level in Soufflé. A predicate R(X) is transformed into R(X, @Qrule, @height). For the sake of
readability in this text, we distinguish between original and provenance tuples, where an original tuple is a
provenance tuple without proof annotations. We rewrite all logic rules at the syntactic level to take account
of the two provenance attributes constituting the proof annotation for our system, and to compute the value
of the annotations. The proof annotation instrumentation is performed as follows where a rule

ok R(X) - Ri(X1),...,R.(Xpn), ¥(X1,..., Xp)

18

is transformed into:

o+ R(X, k, max(@height,, ..., Qheight,,) + 1) :-
Ri(X1,, @height,), ..., Rn(Xn,, Gheight..), (X1, ..., X»)

The transformed provenance rule computes level and height annotations for a new tuple, according to the
semantics in Section 3.2. Since the rules are known statically, the rule number annotation k can be assigned
a constant value for each rule in the transformed specification. The rule numbers of the body predicates are
ignored by using _ in each body predicate since they do not influence the head predicate.

The transformed provenance rule syntactically represents the computation of proof annotations during
rule evaluation. However, the actual execution of provenance rules differs from a standard semi-naive eval-
uation as presented in [2]. The reason is the update mechanism: a newly discovered provenance tuple may
overwrite an existing provenance tuple if they are the same original tuple, but the new tuple has a smaller
height annotation.

The provenance evaluation strategy extends the semi-naive algorithm by updating the rule number and
the height annotation of a tuple (as defined by 7p) if the original tuple already exists and the newly generated
tuple has smaller height annotation. In other words, if a smaller proof tree could be found in a subsequent
iteration for the same tuple, then an update occurs. Otherwise, if the original tuple doesn not already exist,
the provenance tuple is inserted into the relation as is. Thus, the rule computing Algol in the semi-naive
evaluation is modified to accommodate the possibility of updates, i.e.,

A;{Ol = (newi" — RG) U{t € Ry | h'(t) > h"T' (1)}

where A? denotes the height annotations in iteration i.

Therefore, with our provenance evaluation strategy, we integrate the possibility of an annotation update
into the data structure. During an insertion operation, if the same original tuple is discovered, with a larger
height annotation than the current tuple, then an update occurs. Therefore, we wish to call the insert
operation if either the tuple does not already exist or the existing tuple has the larger proof annotation. A
specialized existence check is implemented, implicitly implementing the semantics of the provenance A?l
relation. Similar to the standard existence check, the special existence check is implemented as part of the
data structure that has been specialized for each relation.

The result is the RAM snippet in Figure 13. The obvious differences compared to Figure 12 are in lines
3-4, where the level annotation is computed within the loop nest, as part of the insertion. Furthermore, the
PROV NOT IN operation in line 3 denotes the special provenance existence check, which allows the INSERT to
proceed if either the tuple does not already exist, or exists with a larger proof height annotation. Thus, this
implements the update semantics discussed above.

SCAN assign AS tO
SEARCH @delta_vpt AS t1 ON INDEX t1.x=t0.y
IF (t0.x,tl.y,_,(max(t0.Cheight,tl.Cheight)+number(1))) PROV NOT IN vpt
INSERT (t0.x, tl.y, number(2), (max(tO.@height,tl.@height)+number(1))) INTO @new_vpt

AW N e

Figure 13: Provenance version of RAM loop nest

However, the specializations in the data structures still remain to be discussed. Soufflé employs a highly
specialized parallel B-Tree data structure [25], with index orderings for the attributes generated automatically
via an optimization problem [38]. The B-Tree employs a special optimistic read/write lock for each node,
allowing high throughput for parallel insertion. During an insert operation, a thread may obtain a read
lease for each node as it checks whether the tuple to be inserted already exists. If an insertion is required,
it checks if the lease has changed, and restarts the whole procedure if it has. Otherwise, it upgrades to
a write lease and inserts the tuple into the correct position in the B-Tree. The data structure also takes
advantage of Souffié’s Datalog evaluation setting, where a single relation is either read from, or written to,
but never at the same time. Therefore, there are no interleaved reads and writes, and so read operations are
not synchronized.

With the proof annotations, we modify these specializations so that they can take into account the prove-
nance semantics. The important step is the update semantics, and thus we integrate an update mechanism

19

into the insert operation, without requiring to delete and then re-insert. The provenance evaluation strat-
egy requires two main modifications to our B-Tree data structure. Firstly, the existence check for insertion
should consider only the original tuple, and ignore annotations. This ensures that Datalog set semantics are
preserved and that no duplicate original tuples can exist. However, note that we still need to retrieve the
full tuple, including its proof annotations. This is important for the proof tree construction, discussed in the
next section. To address this concern, we use different lexicographical orderings of indices for the insert and
retrieve operations. The insert index order does not include the attributes storing the proof annotations
(so that annotations are not considered when checking existence), while the retrieve index order does. We
also need to ensure that updating an annotation does not change the ordering of tuples according to the
index; otherwise subsequent index supported searches will fail. Therefore, the retrieve index order requires
the annotation attributes to be at the end, as this guarantees that an update to the annotations does not
affect tuple ordering.

Secondly, we must have a mechanism to update existing tuples to implement the update semantics in
Section 3.2. To achieve this, we modified the insert operation so that it may also update any existing
tuple with a smaller proof annotation. This insertion first requires to check if the original tuple exists in the
B-Tree. If it does, rather than aborting (as it would with standard Datalog evaluation), the insertion then
checks the annotation. If the height annotation of the existing tuple is larger than the tuple to be inserted,
then the annotations of the existing annotation are updated with new values. Note that during an update,
a read lease also needs to be validated and upgraded to a write lease. The integration of the update into
the insert operation avoids any need to delete and re-insert tuples, thus improving the efficiency of the
provenance evaluation strategy. These modifications to the B-Tree reflect the desired insertion semantics,
and updates are handled directly in the insert operation. All other retrieval operations for the B-Tree are
not modified, and tuples can be retrieved as normal, including their proof annotations.

4.2 Implementing a Proof Tree Construction User Interface

After the provenance evaluation strategy is completed, the proof tree construction stage is driven by the
user. It is critical that this process is also fully parallelized and highly performant.

The user interface is implemented as a command line, where the user can enter queries to explain the
existence and non-existence of a tuple. For example, the query explain alias("a", "b") results in the
proof tree in Figure 14. Explaining the non-existence of a tuple, i.e., the query explainnegation vpt("b",
"14") results in the interaction in Figure 15. The user may also select the size of proof tree fragments to
display, i.e., setdepth 6 instructs the system to construct 6 levels of the proof tree in the next query. For
each debugging query, the system invokes the relevant procedure to construct a proof tree fragment.

> explain alias("a", "b")
new("a", "11")
----------- (R1)
Ile‘“’(Ila.ll’ Illlll) assign(llbﬂ’ |lall) vpt(llaﬂ’ |l11ll)
(R1) (R2)
th(llall’ II11II) th(llbll’ lllill) llall != |lb"

(R1)

alias("a" s ")

Figure 14: Explaining the tuple alias(a,b)

It is critical that the proof tree construction procedures are highly performant since the constructed IDB
may be very large, and we may need to search through many tuples to construct a proof tree fragment.
Therefore, the proof tree construction procedures must be tightly integrated into the Soufflé system to
enable a high-performance, parallel search. We integrate these procedures into the Soufflé RAM, utilizing
the existing translation from RAM to parallel C++. Moreover, since the provenance evaluation strategy
uses specialized B-Tree data structures, the proof tree construction can also utilize index supported searches
to find relevant tuples.

Recall that the proof tree construction is facilitated by searches for subproofs. Therefore, we require
a specialized framework in the Soufflé RAM to implement a subproof search. We term this framework a
subroutine framework. Each subproof search can be implemented as a subroutine, thus integrating with the

20

Enter command > explainnegation vpt("b", "14")
1: vpt(Var,0bj) :-
new(Var,0bj) .

2: vpt(Var,0bj) :-
assign(Var,Var2),
vpt (Var2,0bj) .

3: vpt(Var,0bj) :-
load(Var,Y,F),
store(P,F,Q),
alias(P,Y),
vpt(Q,0bj) .

Pick a rule number: 2

Pick a value for Var2: d

assign(llbﬂ’ l|dll) X th("d", ll14ll) ‘/
(R2)

th("b" s ||14u)

Figure 15: Explaining the non-existence of the tuple vpt(”b”,”14”)

Souffié RAM.

To explain the existence of a tuple, a subproof search is required to search the body of a rule for
matching body tuples, satisfying the constraint that proof tree height is lower than the current tuple.
This backwards search for a single rule is implemented as a subroutine. For example, the rule r
vpt(Var,Obj) :- assign(Var, Var2),vpt(Var2,0bj) is implemented as the subroutine in Figure 16.

1 SUBROUTINE vpt_2_subproof

2 SCAN assign AS tO WHERE tO0.x = argument(0) AND t0.@level_number < argument(2)

3 SEARCH vpt AS t1 ON INDEX t1.x=tO.y AND tl.y=argument(1l) WHERE t1.@level_number < argument(2)
4 RETURN (t0.x, tO0.y, tO.@rule_number, tO.@level_number, tO.y,

5 tl.y, tl.@rule_number, tl.@level_number)

Figure 16: Subroutine for example program

Lines 2-5 represent a search through a database that is already constructed by the initial bottom-up
evaluation, to find tuples which satisfy the constraints required for the construction of a proof tree fragment.
The values of argument (0) and argument (1) are the values in the head tuple, and argument(2) is the
height annotation of the head tuple. Therefore, this subproof search is paramterized by the head tuple. The
relations of the body atoms, assign and vpt are searched to find tuples t0 and t1 which match the body
of the rule. Importantly, the constraints for the level number are encoded in lines 3-4, ensuring that the
resulting tuples have level number annotations lower than the query tuple. As shown in Section 3.3, being
able to apply this operation recursively allows us to generate the full proof tree.

Similarly, to generate a failed subproof to explain the non-existence of a tuple, the search for failing and
holding parts of a subproof is implemented as a subroutine. Given an instantiated rule (which is produced via
user interaction), a subroutine returns whether each body tuple is in the IDB and whether each constraint
is satisfied.

5 Experiments

In this section, we conduct experiments with the provenance evaluation strategy and provenance queries
implemented in Soufflé (see Section 4). The experiments are conducted for large-scale Datalog specifications.
We have the following experimental research claims:

Claim-I: Scalable Provenance Evaluation Strategy. Our provenance evaluation strategy only has
a minor impact on the runtime performance, i.e., our provenance evaluation strategy remains scalable
for realistic datasets and rulesets.

21

context-insensitive 1-obj, 1-heap

Benchmark # EDB # IDB # EDB # IDB

antlr 8,319,095 | 21,832,232 | 8,319,095 | 24,145,648
bloat 4,468,277 | 13,104,020 | 4,468,277 | 15,417,516
chart 8,743,770 | 22,975,742 | 8,743,729 | 25,289,200
eclipse 4,389,770 | 13,076,265 | 4,389,799 | 15,389,708
fop 8,769,583 | 22,970,533 | 8,769,572 | 25,283,913
hsqldb 9,007,087 | 24,561,921 | 9,007,087 | 26,875,437
jython 5,203,400 | 17,158,375 | 5,203,400 | 19,471,797
luindex 4,396,394 | 13,415,336 | 4,396,394 | 15,728,788
lusearch 4,396,415 | 13,415,390 | 4,396,394 | 15,728,788
pmd 8,388,202 | 22,853,676 | 8,388,202 | 25,167,134
xalan 8,670,980 | 23,488,951 | 8,670,966 | 25,802,385

Table 1: Statistics for DooP benchmarks

Claim-II: Scalable Proof Tree Construction. The provenance queries for exploring proof paths
scales to large proof tree fragments, allowing efficient interactive exploration of proof trees.

Claim-III: Need for Proof Tree Exploration. For realistic benchmarks, minimal proof trees are
still very large substantiating the need for interactive proof tree exploration.

As an experimental testbed, we use the DOOP [8] points-to analysis framework. We experiment with
DoOoP’s context-insensitive and 1-object-sensitive, 1-heap (1-obj, 1-heap) analyses that exhibit different run-
time complexities. As inputs for the points-to analyses, we compute the points-to sets for the DaCapo 2006
Java program benchmarks. Each analysis contains approx. 300 relations, 850 rules and produces up to ap-
prox. 26 million output tuples on the DaCapo benchmarks (See Table 1). Our experiments were performed
on a computer with an Intel Xeon Gold 6130 CPU and 192 GB of memory, running Fedora 27. Soufflé
executables were generated using GCC 7.3.1.

5.1 Performance of the Provenance Evaluation Strategy

In Table 2, we present the runtime and memory consumption of Souffié with 8 threads, comparing standard
Souflié with our provenance evaluation strategy with proof annotations. We use the DaCapo benchmarks
with both the context-insensitive and 1-obj, 1-heap analysis. As expected, Soufflé with proof annotations
incurs an overhead during evaluation. This overhead for the provenance evaluation strategy is typically
within a factor of 1.3 which is a small overhead to pay for being able to generate minimal proof trees for
all possible tuples in the IDB. Hence, we demonstrate the viability of the provenance evaluation strategy
for large-scale Datalog specifications, substantiating Claim I. We noticed that the runtime overhead for the
context-insensitive analysis was smaller across all benchmarks than that of the 1-obj-1-heap analysis due to
cache locality that was more prominent for smaller memory footprints. Note that the overhead for memory
consumption is similar to performance overheads, at approximately 1.45x. This overhead results from the
storage of extra proof annotations during evaluation.

In contrast, a naive direct encoding approach (cf. Chapter 5, [44]), where each tuple is annotated with
its full subproof (i.e., direct children in the proof tree), resulted in excessive memory usage (up to 100x) on
a simple transitive closure experiment with 2000 tuples, and thus cannot be deployed for large-scale Datalog
specifications such as those found in Doop.

Figures 17a and 17b show the total runtime and average memory usage for each of the Doopr DaCapo
benchmarks with both DOOP (context-insensitive and 1-obj-1-heap) analyses, running with multiple threads.
The figure demonstrates that the provenance evaluation strategy is scalable, in that the overhead is sustain-
able with an increasing number of threads. We observe that the overall runtime decreases for provenance
and without provenance until 5 threads, and increased thereafter. This is caused by the synchronization of
Soufflé’s rule evaluation system and is not specific to provenance. It is interesting to note that the runtime
overhead is larger with fewer threads, being 1.45x for 1 thread while being 1.23x for 16 threads. Again, this
is related to the underlying hardware architecture providing caches and memory lanes for each core. With
more threads, the memory bandwidth to access the logical relations with proof annotations improves.

22

Runtime (sec) Memory (MB)

Benchmark | No Prov. [Prov. [(x) | No Prov. | Prov. [(X)
context-insensitive

antlr 9.73 | 12.29 | 1.26 595 900 | 1.51
bloat 9.54 | 12.25 | 1.28 596 900 | 1.51
chart 15.89 19.60 | 1.23 1,103 1,604 | 1.45
eclipse 9.64 | 11.76 | 1.22 593 898 | 1.51
fop 15.57 | 19.48 | 1.25 1,079 | 1,579 | 1.46
hsqldb 16.36 19.73 | 1.21 1,124 1,642 | 1.46
jython 11.00 | 13.62 | 1.24 731 | 1,090 | 1.49
luindex 9.62 | 12.00 | 1.25 594 905 | 1.52
lusearch 9.80 | 12.23 | 1.25 593 904 | 1.52
pmd 15.58 18.90 | 1.21 1,053 1,542 | 1.46
xalan 15.59 | 19.54 | 1.25 1,091 | 1,595 | 1.46
geo-mean 1.24 1.44
1-obj, 1-heap

antlr 10.84 | 12.60 | 1.16 936 | 1,310 | 1.40
bloat 15.77 | 22.00 | 1.40 732 1,082 | 1.48
chart 21.84 | 28.13 | 1.29 1,242 1,788 | 1.44
eclipse 15.76 | 21.00 | 1.33 729 | 1,080 | 1.48
fop 22.21 29.63 | 1.33 1,216 1,756 | 1.44
hsqldb 23.01 29.43 | 1.28 1,256 1,823 | 1.45
jython 17.54 | 22.96 | 1.31 868 1,270 | 1.46
luindex 1594 | 21.55 | 1.35 730 | 1,086 | 1.49
lusearch 15.95 | 21.25 | 1.33 731 1,087 | 1.49
pmd 21.58 | 28.21 | 1.31 1,190 | 1,725 | 1.45
xalan 22.09 | 28.68 | 1.30 1,224 1,773 | 1.45
geo-mean 1.31 1.46

Table 2: Runtime and memory usage overheads for Souffié with and without proof annotations with 8 threads

Runtime (sec) | Average Memory (MB)
Our approach 3:02.7 1,289
Top-k 3:02.3 1,289

Table 3: Runtime and memory usage overheads for our provenance approach compared to [14]. Runtime is
the total over all context-insensitive DaCapo analyses, and memory usage is the average over all context-
insensitive DaCapo analyses.

The memory usage of the provenance evaluation strategy has a consistent overhead of 1.45x, which aligns
with our expectations that there would be a reasonable overhead associated with storing the provenance
annotations per tuple. Note that this overhead is constant over any number of threads since the amount of
extra information stored overall does not change with the number of threads.

Comparison with current approaches: The current state of the art in tracking Datalog provenance
is to instrument the specification with a given provenance query. The instrumented Datalog specification can
then be evaluated using any Datalog engine. One example of this approach is the top-k approach [13, 14],
where Datalog specifications are instrumented based on a provenance query taking the form of a derivation
tree pattern.

For our experiments, we implemented the instrumentation algorithm presented in [14], and evaluated the
resulting Datalog using Soufflé, again using DOOP as the test Datalog specification. Since the instrumentation
is done for a specific query, we chose an arbitrary tuple from the VarPointsTo relation in DOOP.

The results in Figure 3 showed that during evaluation time, the difference in both runtime and memory
usage is less than 1%, demonstrating that our provenance encoding scheme is as scalable as the state-of-the-
art. However, with our approach, we are able to answer any provenance query during proof construction
time.

5.2 Proof Tree Construction

For the construction of proof trees, the performance of the provenance queries is instrumental. A debugging
query constitutes a backward search for a rule (i.e., reverting the computational direction of a rule). The

23

1,500 N Y S

T Y Y Y Y Y Y Y B m I I 0oNo Prov. [0 Prov.
o No Prov. I 0 Prov.
1,000 |- J
m 1,000 |- | | | N
o g
: :
g 500 - = S 500 - N
=]
~
NNNH“H““““ O — T T
0 R e m IR RRIRRIER RN 12345678 910111213141516
12345678 910111213141516 Threads
Thread
reads (b) Average evaluation memory usage of Soufflé on all
(a) Total evaluation runtime of Soufflé on all DaCapo DaCapo benchmarks with each Doop
benchmarks with each DooP (context-insensitive and (context-insensitive and 1-obj, 1-heap) analysis with
1-obj, 1-heap) analysis with and without provenance and without provenance

construction of the proof tree is performed level by level. The expansion of a node in the proof tree represents
a single debugging query.

In Figure 18a, we show the time for proof tree fragments with levels up to a height of 20. We initiate
the proof tree construction for randomly sampled output tuples in the Doop DaCapo benchmarks. In the
figure, we plot the runtime against the number of nodes in the proof tree fragment. Even for 20 levels,
these proof trees contain over 15,000 nodes. Considering that full proof trees may have heights over 200, the
corresponding full proof trees would be intractable to compute and understand due to exponential growth.
However, this experiment shows that the construction of proof trees is approximately linear in the size of
the tree. Therefore, provenance queries can be efficiently computed, and the method will scale well for
interactive use. The interactive exploration of proof trees is scalable, with each debugging query on average
taking less than 1 ms per node.

5.3 Characteristics of Proof Trees

In the following experiments, we demonstrate the difficulty of proof tree construction for Datalog speci-
fications at large scale. Figure 18b shows the distribution of heights of full proof trees for the DaCapo
benchmarks. The proof tree heights can be more than 300. While this may not seem prohibitive, the ex-
pected number of nodes in the proof tree is exponential in height. A non-linear regression performed on
the sizes of actual proof trees, suggests that the branching factor of proof trees is approximately 1.466 for
the DaCapo benchmarks. Therefore, since larger proof trees will have an exponential number of nodes, it
is computationally intractable to construct full proof trees for these large specifications. Besides, there is a
usability challenge in generating meaningful explanations for the existence of a tuple, which is addressed by
the interactive exploration of fragments of a proof tree, with the user exploring only relevant fragments. This
is in contrast to a full proof tree, where a user may have to interpret millions of nodes to find an explanation.

6 Related Work

Debugging for logic programming languages has a long history, with work having been done on algorithmic
debugging strategies since the 1980s [16, 35]. These works present a framework for the algorithmic debugging
method for Prolog programs, where a system asks the user questions about the intended model of the program
to find buggy rules. However, they are based on the SLDNF resolution of Prolog which is not truly declarative,
and thus the semantics of Datalog differ. Our method aligns practically with the interactive debugging
frameworks presented here, but applied to the bottom-up evaluation of Datalog, and with sophisticated and
efficient techniques to generate the debugging information.

Debugging and Provenance. Our method also fits into the established frameworks for provenance
in Datalog [12] and debugging for Datalog [10]. The proof trees generated by our method are analogous to

24

-10°

® [] 6
0
g 5 4
g 2
2 E
z]
E Z
E 2
0 1
0 50 100 150 200 250 300
Number of nodes -10* Height
(a) Proof Tree Construction Time (b) Proof Tree Heights

Figure 18: Proof Tree Construction and Statistics

the computation graphs presented in [10], and are equally effective for debugging. They can also be seen as
an extension of how-provenance [9]. However, our hybrid method for generating proof trees is novel, i.e., it
permits multiple debugging queries in a single debugging cycle. Hence, our method is especially useful for
debugging large Datalog specifications.

Provenance in Datalog. Methods for computing provenance in Datalog has been a well-explored field
[6, 26, 15, 13, 11, 27], however with the caveat that all these previous approaches store the full provenance
information during the evaluation of Datalog. [26], for example, stores the whole computation graph as an
auxiliary relation during Datalog evaluation, which may be many times larger than the IDB itself in large
analysis use cases. Approaches such as [13, 27] attempt to reduce the impact of provenance storage by only
storing information relevant for a particular provenance query, which is given before the instrumentation
and evaluation of Datalog. Thus, in these approaches, the Datalog specification needs to be re-evaluated for
each different provenance query and therefore extends the investigation phase of the debugging cycle. The
closest approach to ours is perhaps [15], where a boolean circuit representation for provenance is described,
as well as an algorithm for generating such a boolean circuit during Datalog evaluation. However, there is no
mechanism for exploring an understandable provenance representation, and no practical implementation of
this work. Therefore, our approach is novel by minimizing the storage overhead of provenance information,
allowing interactive exploration of proof trees, all while providing an effective integration into an existing
semi-naive Datalog engine.

Other Applications for Datalog Provenance. Debugging Datalog specifications is not the only
use case for provenance, with user-guided approaches [42, 31, 33, 43| for program analysis also relying on
tracking the origins of data. In [33, 42, 31], a user may tag certain static analysis alarms, to increase or
decrease their importance in the next analysis cycle. In [43], the analysis system automatically generates
an appropriate abstraction, by iteratively trying and refining failing abstractions. All these approaches rely
on an annotation framework for Datalog: the user-guided systems require the user to add an annotation
representing the importance of an alarm, and the abstraction refinement system requires the system to tag
failing analyses with annotations. In any case, our provenance evaluation strategy would fit well into these
systems, by providing an annotation framework at the Datalog engine level.

Provenance in Databases. Outside of Datalog, provenance has also been a focus of the database
community, being useful for understanding the origins of data in large database systems. For instance,
Trio [41, 7] and Perm [18, 19] are two such systems implementing provenance systems for relational databases.
These systems focus on tracking the lineage of data in a database, rather than on debugging a query, and thus
it is essential that the provenance information is stored directly alongside the data. It is important to note
that in the context of databases, Datalog acts as a powerful query language rather then a specification logic.
As aresult, the Datalog specifications in these use cases typically consist of fewer rules [29], that do not exhibit
complex patterns found in program analysis benchmarks [8]. Further study has also been undertaken in
querying database provenance, with [37, 4] both presenting mechanisms to construct provenance information
lazily after the database query is run. Thus, similarly to our approach, these allow the querying of arbitrary

25

parts of provenance information. However, both approaches are applied to database systems, with [37]
reconstructing provenance information based on tracking file I/O and system calls during query evaluation,
and [4] based on system logs produced by the database system. Therefore, with the highly complex recursive
nature of real-world Datalog specifications, similar information may blow up drastically, and experiments
of both works only show scalability up to 10,000 tuples. Moreover, these approaches are unsuitable for our
setting of in-memory analysis workloads.

7 Conclusion

In this paper we have presented a novel provenance evaluation strategy for Datalog specifications. The
provenance evaluation strategy extends tuples in the IDB with proof annotations. With the help of proof
annotations, provenance queries can construct minimal proof trees incrementally. Our method has very small
overheads at logic evaluation time in comparison to standard top-down evaluation or a naive provenance
methods that encode provenance information explicitly. Hence, our method enables debugging of large-scale
logic specifications for the first time. We have implemented our provenance method in a high performance
Datalog engine called Soufflé [24], and demonstrated its feasibility through the DOOP program analysis
framework. We show that the runtime overheads of the provenance evaluation strategy are approximately
1.27x, and the memory overheads are 1.45x.

References

[1] souffle-lang/souffle: Soufflé is a variant of datalog for tool designers crafting analyses in horn clauses.
soufflé synthesizes a native parallel c++ program from a logic specification. more information can be
found here: http://souffle-lang.github.io/, 2017. Accessed: 19-10-2017.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley Publishing Company,
1995.

[3] N. Allen, B. Scholz, and P. Krishnan. Staged Points-to Analysis for Large Code Bases, pages 131-150.
Springer Berlin Heidelberg, 2015.

[4] B. S. Arab, D. Gawlick, V. Krishnaswamy, V. Radhakrishnan, and B. Glavic. Using reenactment to
retroactively capture provenance for transactions. IEFEFE Transactions on Knowledge and Data Engi-
neering, 30(3):599-612, March 2018.

[5] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veldhuizen, and G. Wash-
burn. Design and implementation of the logicblox system. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 1371-1382, New York, NY,
USA, 2015. ACM.

[6] T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and D. Srivastava”. Explaining program execution
in deductive systems. Proceedings of Deductive and Object-Oriented Databases: Third International
Conference, pages 101-119, 1993.

[7] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widom. An introduction to uldbs and the trio system.
IEEFE Data Engineering Bulletin, 2006.

[8] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisticated points-to analyses.
SIGPLAN Not., 44(10):243-262, 2009.

[9] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characterization of data provenance.
Proceedings of the International Conference on Database Theory, 1973:316-330, 2001.

[10] R. Caballero, Y. Garcia-Ruiz, and F. Sdenz-Pérez. A theoretical framework for the declarative debugging
of datalog programs. In K.-D. Schewe and B. Thalheim, editors, Semantics in Data and Knowledge
Bases, pages 143-159, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

26

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. Caballero, Y. Garcia-Ruiz, and F. Sdenz-Pérez. Debugging of wrong and missing answers for datalog
programs with constraint handling rules. 07 2015.

J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in databases: Why, how, and where. Foundations
and Trends in Databases, 1:379-474, 2009.

D. Deutch, A. Gilad, and Y. Moskovitch. Selective provenance for datalog programs using top-k queries.
Proceedings of the VLDB Endowment, 8:1394-1405, 2015.

D. Deutch, A. Gilad, and Y. Moskovitch. Efficient provenance tracking for datalog using top-k queries.
The VLDB Journal, 27(2):245-269, Apr 2018.

D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for datalog provenance. Conference on Database
Theory, 17:201-212, 2014.

W. Drabent, S. Nadjm-Tehrani, and J. Maluszyniski. Meta-programming in logic programming. pages
501-521, 1989.

Y. Futamura. Partial evaluation of computation process — an approach to a compiler-compiler. Higher
Order Symbol. Comput., 12(4):381-391, Dec. 1999.

B. Glavic and G. Alonso. Perm: Processing provenance and data on the same data model through
query rewriting. IEEE International Conference on Data Engineering, 25:174-185, 2009.

B. Glavic, R. J. Miller, and G. Alonso3. Using sql for efficient generation and querying of provenance
information. Lecture Notes in Computer Science, 8000:291-320, 2013.

N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis. Gigahorse: Thorough, declarative decompilation
of smart contracts. In Proceedings of the 41th International Conference on Software Engineering, ICSE
2019, page (to appear), Montreal, QC, Canada, May 2019. ACM.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis. Madmax: Surviving out-
of-gas conditions in ethereum smart contracts. In SPLASH 2018 OOPSLA, 2018.

K. Hoder, N. Bjgrner, and L. de Moura. puz— an efficient engine for fixed points with constraints.
In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification, pages 457-462, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

S. S. Huang, T. J. Green, and B. T. Loo. Datalog and emerging applications: An interactive tutorial. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD
11, pages 1213-1216. ACM, 2011.

H. Jordan, B. Scholz, and P. Subotic. Soufflé: On synthesis of program analyzers. Proceedings of
Computer Aided Verification, 28:422-430, 2016.

H. Jordan, P. Suboti¢, D. Zhao, and B. Scholz. A specialized b-tree for concurrent datalog evaluation.
In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, PPoPP ’19,
pages 327-339, New York, NY, USA, 2019. ACM.

S. Kohler, B. Ludéascher, and Y. Smaragdakis. Declarative datalog debugging for mere mortals. Lecture
Notes in Computer Science, 7494:111-122, 2012.

S. Lee, S. Kohler, B. Ludéscher, and B. Glavic. Efficiently computing provenance graphs for queries
with negation. CoRR, abs/1701.05699, 2017.

S. Lee, B. Ludéscher, and B. Glavic. Provenance summaries for answers and non-answers. Proc. VLDB
Endow., 11(12):1954-1957, Aug. 2018.

S. Liang, P. Fodor, H. Wan, and M. Kifer. Openrulebench: An analysis of the performance of rule
engines. In Proceedings of the 18th International Conference on World Wide Web, WWW ’09, pages
601-610, 2009.

27

[30]

[31]

[32]

M. Madsen, M.-H. Yee, and O. Lhotak. From datalog to flix: A declarative language for fixed points
on lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, pages 194-208, New York, NY, USA, 2016. ACM.

R. Mangal, X. Zhang, A. V. Nori, and M. Naik. A user-guided approach to program analysis. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 462-473, New York, NY, USA, 2015. ACM.

X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based network security analyzer. In
Proceedings of the 14th Conference on USENIX Security Symposium - Volume 14, SSYM’05, pages 88,
Berkeley, CA, USA, 2005. USENIX Association.

M. Raghothaman, S. Kulkarni, K. Heo, and M. Naik. User-guided program reasoning using bayesian
inference. pages 722-735, 06 2018.

R. Ramakrishnan and S. Sudarshan. Top-down vs. bottom-up revisited. In In Proceedings of the
International Logic Programming Symposium, pages 321-336. MIT Press, 1991.

E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA, 1983.

M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven points-to analysis for java. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, pages 59-76, New York, NY, USA, 2005. ACM.

M. Stamatogiannakis, P. Groth, and H. Bos. Decoupling provenance capture and analysis from exe-
cution. In 7th USENIX Workshop on the Theory and Practice of Provenance (TaPP 15), Edinburgh,
Scotland, 2015. USENIX Association.

P. Subotic, H. Jordan, L. Chang, A. Fekete, and B. Scholz. Automatic index selection for large-scale
datalog computation. PVLDB, 12(2):141-153, 2018.

J. D. Ullman. Bottom-up beats top-down for datalog. In Proceedings of the Eighth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’89, pages 140-149, New
York, NY, USA, 1989. ACM.

J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with Binary Decision Diagrams for
Program Analysis, pages 97-118. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. In 2nd Biennial
Conference on Innovative Data Systems Research, CIDR 2005, pages 262276, 01 2005.

X. Zhang, R. Grigore, X. Si, and M. Naik. Effective interactive resolution of static analysis alarms.
Proc. ACM Program. Lang., 1(OOPSLA):57:1-57:30, Oct. 2017.

X. Zhang, R. Mangal, R. Grigore, M. Naik, and H. Yang. On abstraction refinement for program
analyses in datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI '14, pages 239-248, New York, NY, USA, 2014. ACM.

D. Zhao. Honours thesis: Large-scale provenance for soufié. 2017.

W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and maintenance of
network provenance at internet-scale. Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, pages 615-626, 2010.

28

