
Automatic Index Selection for
Inequalities
Samuel Isaac Arch

Supervisor: Bernhard Scholz

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Introduction

▶ Datalog is popular for its conciseness and expressiveness [1]
■ Static Program Analysis (DOOP)
■ Network Analysis (VPC)
■ Binary Disassembly (DDISASM)

▶ Competitive with hand-crafted tools at giga-scale (Soufflé) [2]
▶ Current evaluation of inequalities fails to meet real-world demands (DDISASM)

We present two new approaches to speed up inequalities automatically

2/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Datalog

Declarative programming language - specify the logic of a computation using rules

Rules
path(x, y) :- edge(x, y).
path(x, z) :- edge(x, y), path(y, z).

Facts (Input)
edge(1, 2), edge(2, 3).

Knowledge (Output)
path(1, 2), path(2, 3), path(1, 3).

3/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Evaluating Datalog with Soufflé
Logic programs are transformed into equivalent imperative programs

Original Rule
path(x, z) :- edge(x, y), path(y, z).

Transformed Rule
path(a, d) :- edge(a, b), path(c, d), c = b.

Loop Nest
for all t0 ∈ edge do

for all t1 ∈ path do
if t1(c) = t0(b) do

if (t0(a), t1(d)) /∈ path do
project (t0(a), t1(d)) into path

+ No need to materialise intermediate relations

- Complexity proportional to the size of the Cartesian product of involved relations
4/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Equality Primitive Searches

An equality primitive search [3] is a filter operation on a Datalog relation where a subset
of the relation’s attributes are equal to constant values i.e.

σx1=v1,…,xk=vk(R) = {t ∈ R | t(x1) = v1,…, t(xk) = vk}

Key Idea
Hoist equality predicates on relations to make equality primitive searches

Table Scan and Filter
for all t0 ∈ edge do

for all t1 ∈ path do
if t1(c) = t0(b) do

if (t0(a), t1(d)) /∈ path do
project (t0(a), t1(d)) into path

Equality Primitive Search
for all t0 ∈ edge do

for all t1 ∈ σc = t0(b)(path) do
if (t0(a), t1(d)) /∈ path do

project (t0(a), t1(d)) into path

5/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Indexes
Storing logical relations in data structures called indexes can accelerate searches

B-Trees

+ Complexity of evaluating searches is bounded by the size of the output i.e. O(log(n) + |Q|)

+ Tree structures provide natural opportunities for parallelism

+ Effectively exploits caches available

- Not designed to store multi-dimensional data (i.e. tuples)

6/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Indexing Multi-Dimensional Data with B-Trees

B-Trees are uni-dimensional and require a total ordering of all tuples

Lexicographical Ordering
▶ Imposes a total ordering on the set of tuples by comparing attributes one at a time
▶ Provides support for all standard B-Tree operations
▶ For the above example we use the lex-order ℓ = x1 ≺ x2

7/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Which B-Tree Indexes do we Build?

Selecting the right indexes is tricky

Building a Single B-Tree Index

+ Speeds up some of the searches

- Some searches may be uncovered causing dramatic performance degradation

Building Multiple B-Tree Indexes

+ Speeds up every search for a relation

- Replica indexes require maintenance

8/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

The Minimum Index Selection Problem (MISP) [3]

Given a collection of search sets S on a relation R, compute the minimum cardinality set of
B-Tree indexes that cover every search.

Notation
▶ Search sets abstract equality primitive searches since constants are not important
▶ For example: σx=2, y=3, z=5 7→ {x, y, z}

Rationale
▶ Minimise the maintenance cost while still covering every search

9/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Solving the MISP via Minimum Chain Covering [3]

Key Idea

How do we find an index ℓ for two searches S and S′?

An index ℓ = S ≺ (S′ − S) covers both if S ⊂ S′

e.g. ℓ = x ≺ y covers S = {x} and S′ = {x, y}

What if we have a chain of searches?

C = S1 ⊂ S2 ⊂ … ⊂ Sk

There is always an index to cover the whole chain

ℓ = S1 ≺ (S2 − S1) ≺ … ≺ (Sk − Sk−1)

10/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Minimum Chain Covering by Dilworth’s Theorem

Bipartite Graph Maximum Matching Chain Cover

(1) Construct a bipartite graph from S × S
(2) Draw an edge from S to S′ if S ⊂ S′

(3) Compute the maximum cardinality matching on the graph
(4) Map edges from the matching to the minimum chain cover
(5) Create indexes for each chain ℓ = S1 ≺ (S2 − S1) ≺ … ≺ (Sk − Sk−1)

11/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Automatic Index Selection in Soufflé

The state-of-the-art auto-index selection technique is currently deployed in Soufflé

Summary

+ Entirely automatic (no user intervention)

+ Polynomial time index selection (negligible compilation time overhead)

+ Robust as every equality primitive search is covered by an index

- Searches with inequalities are not covered by an index (unacceptable performance)

12/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Spatial Primitive Searches

A spatial primitive search is a filter operation on a Datalog relation where a subset of the
relation’s attributes are lower bounded and/or upper bounded by constant values i.e.

σl1≤x1≤u1,…,lk≤xk≤uk
(R) = {t ∈ R | l1 ≤ t(x1) ≤ u1,…, lk ≤ t(xk) ≤ uk}

▶ An SPS is an equality primitive search when for all xi we have li = ui
▶ An SPS is an inequality primitive search otherwise
▶ The SPS gadget distils each Datalog operation down to its semantics

13/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Statistics on Inequality Primitive Searches

Proportion of Program (%)
▶ DOOP (4.46%)
▶ VPC (4.9%)
▶ DDISASM (3.29%)

Proportion of Evaluation Time (%)

▶ DOOP (Less than 1.29%)
▶ VPC (Less than 0.01%)
▶ DDISASM (Up to 74.66%)

We consider rules which contain at least one inequality primitive search

14/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

How Do We Speed up Inequalities?
The only literature on inequalities in Datalog is over 8 years old [4]

Existing Technique
▶ Program level transformation
▶ Creates new "Filter Relations" that are smaller than the original relations
▶ (1) c(x) :- a(x), b(y), y < x.

▶ (2a) c(x) :- a(x), b_filtered(y), y < x.

▶ (2b) b_filtered(y) :- b(y), y < max x : { a(x) }.

DDISASM Rule (58% of Evaluation Time)
data_object_conflict(EA1, Size1, Type1, EA2, Size2, Type2) :-

data_object_candidate(EA1, Size1, Type1),
data_object_candidate(EA2, Size2, Type2),
EA1 < EA2, EA2 < EA1 + Size1

15/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Spatial Primitive Search ←→ Orthogonal Range Query
Orthogonal range querying is the problem of finding from a set of d-dimensional points S, a
subset Q of points that lie within a specified d-dimensional box

Reduction
▶ Given an SPS: σl1≤x1≤u1,…,lk≤xk≤uk

(R)

▶ Define the bounding box: B = b1 × …× bd

▶ Set bi = [loweri, upperi]

▶ If li is specified, loweri = li
otherwise loweri = inf(Di)

▶ If ui is specified, upperi = ui

otherwise upperi = sup(Di)

▶ Easy to prove that the semantics coincide

Therefore, a single index supporting orthogonal range queries covers every SPS of a relation

16/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Which Index for Orthogonal Range Querying?
Datalog involves large amounts of updating indexes as new knowledge is derived

Rationale for R-Trees [5]
▶ Kd-Trees/Range Trees are not dynamic
▶ Dynamic Range Trees fail in practice [6]
▶ R-Trees are ubiquitous in spatial databases

(MySQL, PostGIS, Oracle Spatial etc.)
▶ R* variant offers fast query performance

(although worst case complexity is O(n))

R-Tree SPS
▶ Use a single R-Tree index for relations with inequality primitive searches

17/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Extending the State of the Art

The original auto-index technique with a cluster of B-Trees performs well, so why not extend it?

Problem: B-Trees are Uni-dimensional Structures
▶ B-Trees cannot perform range queries over more than 1 dimension
▶ At most 1 attribute can have an inequality constraint i.e. li 6= ui for some xi

▶ A simple spatial primitive search is an SPS which satisfies the above condition

Single Search and Filter
for all t0 ∈ R0 do

...
for all tk ∈ σl1≤x1≤u1(Rk) do

if l2 ≤ x2 ≤ u2 and l3 ≤ x3 ≤ u3 do
...

project (...) into ...

18/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

The MISP for Simple Spatial Primitive Searches

Given a collection of search set pairs (SEQ, SINEQ) ∈ S satisfying |SINEQ| ≤ 1 on a relation R,
compute the minimum cardinality set of B-Tree indexes that cover every search set pair.

Notation
▶ Pair of search sets (SEQ, SINEQ)

▶ SEQ contains all constrained attributes where li = ui

▶ SINEQ contains all constrained attributes where li 6= ui

▶ For example: σx=2, y<3, z=5 7→ ({x, z}, {y})
▶ We define S = SEQ ∪ SINEQ to contain all attributes in the search

B-Tree SPS
▶ Use the smallest possible cluster of B-Trees to cover every simple SPS

19/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Solving the MISP via Minimum Chain Covering [3]

Key Idea

Define a new partial order over search set pairs

We write (SEQ, SINEQ) < (S′
EQ, S

′
INEQ) if:

(1) S ⊆ S′ i.e. (SEQ, SINEQ) ⊆ (S′
EQ, S

′
INEQ)

(2) if xi ∈ S′
INEQ then xi /∈ S

For any chain of search set pairs

C = (S1
EQ, S

1
INEQ) < … < (Sk

EQ, S
k
INEQ)

There is always an index to cover the whole chain

ℓ = S1 ≺ (S2−S1) ≺ … ≺ (Sk−Sk−1) and Si
EQ ≺ Si

INEQ

20/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Minimum Chain Covering by Dilworth’s Theorem

Bipartite Graph Maximum Matching Chain Cover

(1) Construct a bipartite graph from S × S
(2) Draw an edge from (SEQ, SINEQ) to (S′

EQ, S
′
INEQ) if (SEQ, SINEQ) < (S′

EQ, S
′
INEQ)

(3) Compute the maximum cardinality matching on the graph
(4) Map edges from the matching to the minimum chain cover
(5) Create indexes for each chain ℓ = S1 ≺ (S2 − S1) ≺ … ≺ (Sk − Sk−1) and Si

EQ ≺ Si
INEQ

21/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Experimental Evaluation in Soufflé

We are looking to compare the performance of R-Tree SPS, B-Tree SPS and the State of the Art

Experimental Setup
▶ Boost C++ R-Tree implementation for R-Tree SPS
▶ Soufflé B-Tree implementation for both B-Tree SPS and the State of the Art
▶ Real-world Datalog applications (DOOP, VPC, DDISASM) with a single thread

Key Metrics
▶ Compilation Time (s)
▶ Maximum Memory Usage (KB)
▶ Evaluation Time (s)

22/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Compilation Time

We find negligible compilation time overhead for both techniques

R-Tree SPS
▶ DOOP = 5%
▶ VPC = 9%
▶ DDISASM = 5%

B-Tree SPS
▶ DOOP = No Effect
▶ VPC = No Effect
▶ DDISASM = 6%

R-Tree SPS adds an overhead because of heavy template usage in Boost

B-Tree SPS adds zero compilation time for DOOP and VPC since no extra indexes are built

B-Tree SPS adds 6% to the compilation time for DDISASM since a few extra indexes are built

23/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Maximum Memory Usage
R-tree SPS consumes approximately 2× more memory at peak

B-Tree SPS consumes less than 1% more memory at peak

R-Tree SPS
▶ DOOP = 2%
▶ VPC = 9%
▶ DDISASM = 137%

B-Tree SPS
▶ DOOP = No Effect
▶ VPC = No Effect
▶ DDISASM = <1%

R-Tree SPS consumes more than double the memory at peak since R-Trees must store MBRs

B-Tree SPS consumes zero extra memory for DOOP and VPC since no extra indexes are built

B-Tree SPS consumes less than 1% extra memory for DDISASM since few extra indexes are built

24/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Evaluation Time
R-tree SPS dramatically slows down evaluation time for DOOP and DDISASM

B-Tree SPS dramatically speeds up evaluation time for DDISASM by up to 2.32×

R-Tree SPS
▶ DOOP = 8.61× to 20.55× slower
▶ VPC = No Effect
▶ DDISASM = 2.01× to 143.63× slower

B-Tree SPS
▶ DOOP = No Effect
▶ VPC = No Effect
▶ DDISASM = 1.02× to 2.32× faster

R-Tree SPS dramatically slows down evaluation since searches are O(n)

B-Tree SPS has no effect on DOOP, VPC since there are very few inequalities

B-Tree SPS dramatically speeds up DDISASM since important inequalities are now indexed

25/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Conclusion

Developed a technique that speeds up evaluation of inequalities dramatically

B-Tree SPS vs State of the Art
▶ Speeds up evaluation time of vital Datalog applications by up to 2.32× (DDISASM)
▶ Consumes less than 1% more memory at peak
▶ Increases compilation time by no more than 6%
▶ Robust for real-world benchmarks with no practical slowdown (DOOP, VPC)
▶ Technique is entirely automatic and runs in polynomial time
▶ Demonstrates that index specialisation outperforms index generalisation (R-Tree SPS)

26/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

Future Work

Many opportunities for future research

Future Work
▶ Efficient Evaluation of Min/Max Aggregates
▶ Improving Performance of Datalog Provenance
▶ Index Selection with Partial Indexes

27/28

Introduction Background Spatial Primitive Searches R-Tree SPS B-Tree SPS Experiments Conclusion Future Work References

References

Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L
Veldhuizen, and Geoffrey Washburn. (2015).
Design and Implementation of the LogicBlox System, pages 1371-1382.
SIGMOD ’15. ACM, New York, NY, USA.

Herbert Jordan, Bernhard Scholz, and Pavle Subotic. (2016).
Soufflé: On Synthesis of Program Analyzers, pages 422-430.
Proceedings of Computer Aided Verification

Pavle Subotic, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz. (2018).
Automatic Index Selection for Large-scale Datalog Computation, pages 141-153.
Proceedings of the VLDB Endowment

Dario Campagna, Beata Sarna-Starosta, and Tom Schrijvers. (2012).
Optimizing Inequality Joins in Datalog with Approximated Constraint Propagation, pages 108-122.
International Symposium on Practical Aspects of Declarative Languages

Antonin Guttman. (1984).
R-trees: A Dynamic Index Structure for Spatial Searching., pages 47-57.
SIGMOD 1984
Pankaj K Agarwal, Jeff Erickson, et al. (1999).
Geometric Range Searching and its Relatives., pages 1-56.
Contemporary Mathematics

28/28

	Introduction
	Subsection 1

	Background
	Subsection 2
	Subsection 3
	Subsection 4
	Subsection 5
	Subsection 6
	Subsection 7
	Subsection 8
	Subsection 9
	Subsection 10
	Subsection 11

	Spatial Primitive Searches
	Subsection 12
	Subsection 13
	Subsection 14

	R-Tree SPS
	Subsection 15
	Subsection 16

	B-Tree SPS
	Subsection 17
	Subsection 18
	Subsection 19
	Subsection 20

	Experiments
	Subsection 21
	Subsection 22
	Subsection 23
	Subsection 24

	Conclusion
	Subsection 25

	Future Work
	Subsection 26

	References

