
Provenance Tracking for Static Analysis

with Datalog

Sarah Sallinger

School of Computer and Communication Sciences

A thesis submitted for the degree of Master of Science at

École polytechnique fédérale de Lausanne

31 July 2019

Supervisor

Prof. Viktor Kunčak

EPFL / LARA

Company Supervisor

Marcelo Sousa, DPhil.

SonarSource

Acknowledgements

First of all, a huge thanks to Marcelo Sousa, my mentor throughout my internship at

SonarSource and advisor for this project, and Viktor Kunčak, who has been my advisor through-

out my studies at EPFL. Thank you for supporting me through all the ups and downs and for

all your patience and helpfulness. It was a fun semester working on a great topic, and I have

learnt a lot.

Furthermore, I would like to sincerely thank Bernhard Scholz and David Zhao from the Univer-

sity of Sydney for providing valuable insights into the inner workings of Soufflé and for giving

me valuable feedback on my work.

A special thanks to Katharina and Lydia for helping me proofread this thesis, I hope it was an

interesting read!

Finally, a big thank you to the other members of SonarSource and of the LARA lab at EPFL, to

my family, and to my friends for your invaluable support throughout this semester. Thank you

for being great companions and for keeping up the good vibes!

iii

Abstract

Logic programming languages such as Datalog are gaining popularity for industrial static pro-

gram analysis. This rise in popularity is due to the ease of expressing analyses in a declarative

manner and to the availability of Datalog solvers that allow for performance characteristics

similar to those of hand crafted analyses.

A major challenge in using Datalog for program analysis is the generation of valuable in-

formation about generated alarms to give useful feedback to the users. A first step towards

obtaining this information is the computation of provenance information for given analysis

alarms. The state-of-the-art Datalog engine Soufflé provides this functionality in a system

component that allows users to construct proof trees for arbitrary alarms.

Other than the Datalog evaluation itself, this component is not fine-tuned for performance

which results in unnecessarily long proof tree construction times. Soufflé’s proof tree construc-

tion mechanism relies on annotations that are added to the generated tuples during Datalog

evaluation, describing the height of the tuple’s proof tree.

This thesis introduces subtree-heights provenance, an alternative proof tree construction

mechanism that additionally annotates tuples with the heights of the proof trees of the tuples

that where used in the generation, i.e. the heights of the first level subtrees.

The alternative provenance mechanism was implemented in Soufflé and evaluated on a

set of different Datalog program analyses over real-world programs, showing significant re-

ductions of the proof tree computation times in all setups and reaching reductions of up to

80% in some setups.

v

Contents
Acknowledgements iii

Abstract v

List of Figures viii

List of Tables ix

List of Listings xiv

List of Algorithms xv

1 Introduction 1

1.1 Contributions . 3

1.2 Motivation and Running Example . 4

1.3 Overview . 6

2 Related Work 7

3 Preliminaries 9

3.1 Datalog evaluation . 9

3.1.1 Magic Set Transformation . 9

3.2 Provenance in Soufflé . 11

3.2.1 Proof Trees . 11

3.2.2 Proof Annotations . 12

3.2.3 Provenance Evaluation Strategy . 14

3.2.4 Proof Tree Generation . 15

4 Subtree-heights Provenance 19

4.1 Key intuition . 19

4.1.1 Proof annotations . 20

4.2 Subtree-heights Provenance Evaluation Strategy 21

4.3 Proof tree generation . 23

4.4 Implementation in Soufflé . 24

5 Experimental Evaluation 25

vii

Contents

5.1 Experimental Setup . 25

5.1.1 Analysis Pipeline . 26

5.1.2 Analyses . 28

5.1.3 Benchmarks . 35

5.2 Results . 35

5.2.1 Bottom Up Evaluation using Subtree-heights Provenance 37

5.2.2 Proof Tree Construction using Subtree-heigths Provenance 40

5.2.3 Magic Set Transformation . 48

5.2.4 Summary . 51

6 Conclusion 53

6.1 Future Work . 53

Bibliography 55

A Appendix 59

A.1 Reachability Versions . 59

A.2 Magic set transformation . 61

A.2.1 CFL rules . 61

A.2.2 Experimental results for graph reachability 67

A.2.3 Experimental results for CFL reachability 71

viii

List of Figures
1.1 Input grph for transitive closure example . 4

5.1 Analysis pipeline . 26

5.2 CFG of the Java functions in Listing 5.1 . 29

ix

List of Tables
5.1 Java input programs . 35

5.2 PHP input programs . 36

5.3 Bottom up time and maximum RSS for running graph reachability analysis on

Java benchmarks without provenance (no), with Soufflé’s explain provenance

(exp), and with subtree-heights provenance (sH). 37

5.4 Bottom up time and maximum RSS for running graph reachability analysis on

PHP benchmarks without provenance (no), with Soufflé’s explain provenance

(exp), and with subtree-heights provenance (sH). 38

5.5 Bottom up time and maximum RSS for running CFL reachability analysis on

Java benchmarks without provenance (no), with Soufflé’s explain provenance

(exp), and with subtree-heights provenance (sH). 39

5.6 Bottom up time and maximum RSS for running CFL reachability analysis on

PHP benchmarks without provenance (no), with Soufflé’s explain provenance

(exp), and with subtree-heights provenance (sH). 39

5.7 Number of trees and average number of nodes per tree for running graph reach-

ability analysis on Java benchmarks with Soufflé’s explain provenance (exp) and

with subtree-heights provenance (sH). 41

5.8 Number of trees and average number of nodes per tree for running graph reach-

ability analysis on PHP benchmarks with Soufflé’s explain provenance (exp) and

with subtree-heights provenance (sH). 41

5.9 Number of trees and average number of nodes per tree for running CFL reacha-

bility analysis on Java benchmarks with Soufflé’s explain provenance (exp) and

with subtree-heights provenance (sH). 42

5.10 Number of trees and average number of nodes per tree for running CFL reacha-

bility analysis on PHP benchmarks with Soufflé’s explain provenance (exp) and

with subtree-heights provenance (sH). 42

5.11 Time for constructing proof trees and number of index accesses for all outputs

for running graph reachability analysis on Java benchmarks with Soufflé’s explain

provenance (exp) and with subtree-heights provenance (sH). 43

5.12 Time for constructing proof trees and number of index accesses for all outputs for

running graph reachability analysis on PHP benchmarks with Soufflé’s explain

provenance (exp) and with subtree-heights provenance (sH). 44

xi

List of Tables

5.13 Time for constructing proof trees and number of index accesses for all outputs

for running CFL reachability analysis on Java benchmarks with Soufflé’s explain

provenance (exp) and with subtree-heights provenance (sH). 44

5.14 Time for constructing proof trees and number of index accesses for all outputs

for running CFL reachability analysis on PHP benchmarks with Soufflé’s explain

provenance (exp) and with subtree-heights provenance (sH). 45

5.15 Time (s) for populating provenance indexes for running graph reachability anal-

ysis on Java benchmarks. 46

5.16 Time (s) for populating provenance indexes for running graph reachability anal-

ysis on PHP benchmarks. 46

5.17 Time (s) for populating provenance indexes for running CFL reachability analysis

on Java benchmarks. 46

5.18 Time (s) for populating provenance indexes for running CFL reachability analysis

on PHP benchmarks. 46

5.19 Maximum resident set size for running graph reachability analysis on Java bench-

marks with Soufflé’s explain provenance (exp) and with subtree-heights prove-

nance (sH). 47

5.20 Maximum resident set size for running reachability analysis on PHP benchmarks

with Soufflé’s explain provenance (exp) and with subtree-heights provenance

(sH). 47

5.21 Maximum resident set size for running CFL reachability analysis on Java bench-

marks with Soufflé’s explain provenance (exp) and with subtree-heights prove-

nance (sH). 48

5.22 Maximum resident set size for running CFL reachability analysis on PHP bench-

marks with Soufflé’s explain provenance (exp) and with subtree-heights prove-

nance (sH). 48

A.1 Bottom up time and maximum RSS for graph reachability without modifications

(standard), with modification (src), without modification and with magic sets

(magic) and with modifications and magic sets (src magic) on Java benchmarks. 60

A.2 Bottom up time and maximum RSS for graph reachability without modifications

(standard), with modification (src), without modification and with magic sets

(magic) and with modifications and magic sets (src magic) on PHP benchmarks. 60

A.3 Bottom up time and maximum RSS for running graph reachability analysis with

magic sets on Java benchmarks without provenance (no), with Soufflé’s explain

provenance (exp), and with subtree-height provenance (sH). 68

A.4 Bottom up time and maximum RSS for running graph reachability analysis with

magic sets on PHP benchmarks without provenance (no), with Soufflé’s explain

provenance (exp), and with subtree-height provenance (sH). 68

A.5 Number of trees and average number of nodes per tree for running graph reach-

ability analysis with magic sets on Java benchmarks with Soufflé’s explain prove-

nance (exp) and with subtree-height provenance (sH). 69

xii

List of Tables

A.6 Number of trees and average number of nodes per tree for running graph reach-

ability analysis with magic sets on PHP benchmarks with Soufflé’s explain prove-

nance (exp) and with subtree-height provenance (sH). 69

A.7 Time for constructing proof trees and number of index accesses for all outputs

for running graph reachability analysis with magic sets on Java benchmarks with

Soufflé’s explain provenance (exp) and with subtree-heights provenance (sH). . 70

A.8 Time for constructing proof trees and number of index accesses for all outputs

for running graph reachability analysis with magic sets on PHP benchmarks with

Soufflé’s explain provenance (exp) and with subtree-heights provenance (sH). . 70

A.9 Time (s) for populating provenance indexes for running graph reachability anal-

ysis with magic sets on Java benchmarks. 71

A.10 Time (s) for populating provenance indexes for running graph reachability anal-

ysis with magic sets on PHP benchmarks. 71

A.11 Maximum resident set size for running graph reachability analysis with magic

sets on Java benchmarks with Soufflé’s explain provenance (exp) and with

subtree-heights provenance (sH). 72

A.12 Maximum resident set size for running graph reachability analysis with magic

sets on PHP benchmarks with Soufflé’s explain provenance (exp) and with

subtree-heights provenance (sH). 72

A.13 Bottom up time and maximum RSS for running CFL reachability analysis with

magic sets on Java benchmarks without provenance (no), with Soufflé’s explain

provenance (exp), and with subtree-heights provenance (sH). 72

A.14 Bottom up time and maximum RSS for running CFL reachability analysis with

magic sets on PHP benchmarks without provenance (no), with Soufflé’s explain

provenance (exp), and with subtree-heights provenance (sH). 73

A.15 Number of trees and average number of nodes per tree for running CFL reacha-

bility analysis with magic sets on Java benchmarks with Soufflé’s explain prove-

nance (exp) and with subtree-heights provenance (sH). 73

A.16 Number of trees and average number of nodes per tree for running CFL reacha-

bility analysis with magic sets on PHP benchmarks with Soufflé’s explain prove-

nance (exp) and with subtree-heights provenance (sH). 73

A.17 Time for constructing proof trees and number of index accesses for all outputs

for running CFL reachability analysis with magic sets on Java benchmarks with

Soufflé’s explain provenance (exp) and with subtree-heights provenance (sH). . 74

A.18 Time for constructing proof trees and number of index accesses for all outputs

for running CFL reachability analysis with magic sets on PHP benchmarks with

Soufflé’s explain provenance (exp) and with subtree-heights provenance (sH). . 74

A.19 Time (s) for populating provenance indexes for running CFL reachability analysis

with magic sets on Java benchmarks. 74

A.20 Time (s) for populating provenance indexes for running CFL reachability analysis

with magic sets on PHP benchmarks. 74

xiii

List of Tables

A.21 Maximum resident set size for running CFL reachability analysis with magic sets

on Java benchmarks with Soufflé’s explain provenance (exp) and with subtree-

heights provenance (sH). 75

A.22 Maximum resident set size for running CFL reachability analysis with magic sets

on PHP benchmarks with Soufflé’s explain provenance (exp) and with subtree-

heights provenance (sH). 75

xiv

List of Listings
1.1 Example datalog program . 4

1.2 Example proof tree . 5

3.1 Iterations of bottom up evaluation . 10

3.2 Example proof tree . 11

3.3 Proof annotations for path example . 13

4.1 Extended proof annotations for path example . 21

5.1 Java functions to be represented in Datalog . 28

5.2 uCFGs of the Java functions in Listing 5.1 . 29

5.3 Datalog facts corresponding to the Java functions in Listing 5.1 30

5.4 Graph reachability analysis . 30

5.5 Efficient graph reachability analysis . 31

5.6 CFL reachability analysis . 34

5.7 Datalog rules for graph reachability after performing magic set transformation 50

A.1 Datalog rules for CFL reachability after performing magic set transformation . 61

xv

List of Algorithms
1 Search for body tuples . 17

2 Search for body tuples using additional height annotations 23

xvii

1 Introduction

Logic programming languages are gaining more and more popularity as domain specific

languages for large-scale applications including static program analysis [18, 8, 4]. Logic

programs have declarative semantics, that is, the program describes the intended results

rather than specifying detailed computational steps of how the result is computed. For

developers of static analyses, this is advantageous as analyses can be expressed very succinctly,

simplifying the development process and reducing development time.

A particular logic programming language that plays an important role in this context is Data-

log [12]. Datalog is a database query language for deductive databases, i.e. databases that use

rules to derive new facts from given input facts. The advantage of Datalog over conventional

database languages based on relational algebra is its natural support for recursive queries [17].

Syntactically, Datalog is a subset of Prolog and while its expressive power is strictly smaller, it

can be evaluated by efficient bottom up algorithms [1].

While Datalog have been proposed for program analysis by the research community several

years ago [30, 8], the interest in the topic is currently revived due to advances in Datalog solvers

as they are able to compete with the performance of hand-crafted analysers [18]. This rise in

interest in Datalog-based analyses is noticeable not only in the research community, but also

in the industry where notable examples include the code analysis provider Semmle [4] and

static analysers developed at Oracle [27].

The project of this thesis was conducted as part of an internship at SonarSource, a company

that develops products for continuous code quality for more than 20 different programming

languages. Given that the analysers included in the products are mostly written in general

purpose programming languages such as Java, they become complex pieces of software which

are expensive to develop and maintain. The potential of using Datalog as an alternative

language for developing analysers in this context was the main motivation for this project.

While the advantages of expressing analyses in a declarative way seemed apparent, the goal

of the project was to look into some concerns that arise when using Datalog for industrial

1

Introduction

analysers. The first concern was whether the analysers can actually meet the scalability

requirements for analysing large codebases with millions of lines of code.

In order to best meet the scalability requirements, we decided to focus our exploration on

the open source Datalog engine Soufflé [18] which specifically targets static analyses. It

synthesizes C++ code from Datalog specifications by doing specialization steps based on

Futamura projections [15]. The generated C++ code implements a specialized semi-naïve

algorithm [1] for bottom up Datalog evaluation. The code is targeted at parallel execution on

shared memory multi-core machines.

As reported in [18], the static analysers synthesised by Soufflé achieve a performance similar to

hand written-analyzers. Soufflé is successfully used in several large scale projects, e.g. security

analysis [27], smart contract analysis [9], and in the pointer and taint analysis framework

Doop [2]. This large body of applications around Soufflé served as indication that a satisfiable

scalability can be achieved.

The second big concern that arose in the exploration is whether analyses written in Soufflé

provide sufficient information about generated alarms in order to be able to give useful feed-

back to users. We started our investigation by looking into the output of a simple taint analysis

written in Soufflé. Taint analyses detect whether values can flow from sources, i.e. locations

reading unfiltered user input, to sinks, i.e. locations in the code executing sensitive commands.

A core feature of the taint analyser developed at SonarSource is that, in case a taint flow from a

source to a sink is located, a data flow path that the tainted value takes through the code is

displayed to the user. In contrast to this, evaluating the rules of the taint analyser produced by

Soufflé only yields pairs of reachable sources and sinks without providing further information

about the path between the two.

In Soufflé, a first step towards giving additional information about analysis alarms, i.e. outputs

of the Datalog evaluation, is to compute provenance information for the output tuples of the

analysis. Provenance information provides insights about why specific tuples were added to

the output of a Datalog program. Soufflé provides functionality to compute provenance in the

form of proof trees [33]. A tuple’s proof tree explains how the tuple was derived from the input

facts by rule applications.

Our first experiments showed that Soufflé’s proof tree generator worked fine for small examples,

but was tremendously slow for computing proof trees of more complex analyses. For example,

one particular proof tree computation did not complete under one hour for an output tuple

of a taint analysis included in Doop [2] on a small Java program with ten lines of code. After

discussing those performance issues with the developers of Soufflé, it turned out that they

were caused by a bug in the version of Soufflé that was used in the experiments. However, the

first experiments motivated us to look into the algorithms of Soufflé’s provenance component

and into possible optimizations that seemed to have potential for improving the performance

of proof tree construction even after the bug causing the initial performance issues was fixed.

2

1.1. Contributions

In this thesis we introduce subtree-heights provenance, an alternative way of computing proof

trees for outputs of Datalog analyses. Soufflé’s proof tree computation relies on a two step

approach: first, it adds proof annotations during bottom up evaluation and then uses these

annotations in a top down proof tree construction algorithm. In particular, every generated

tuple is annotated with the identifier of the rule that was used for its construction and the

height of its proof tree [33]. The key change of our approach is to additionally store the heights

of the proof trees of the tuples that where used in the generation, i.e. the heights of the first

level subtrees.

The main research hypothesis in this thesis is that annotating tuples with the heights of the

first level subtrees in Soufflé dramatically improves the runtime of proof tree construction.

1.1 Contributions

This thesis makes the following contributions:

• We introduce subtree-heights provenance which is a more efficient provenance com-

putation algorithm than Soufflé’s current strategy storing additional annotations at

evaluation time.

• We establish the correctness of the new evaluation strategy through a new proof tree

metric and a proof that this metric satisfies the requirements of Soufflé’s provenance

framework.

• We report on the implementation of the new evaluation strategy and the new proof

tree construction algorithm in Soufflé. This includes the required modifications to the

phase which adds proof annotations but also to big parts of the other phases of Soufflé’s

synthesiser as the proof annotations are integrated tightly into the data structure for

storing generated tuples and many parts of the code are built on the assumption that

there are exactly two proof annotations. The implementation is publicly accessible at

https://github.com/ssallinger/souffle.

• We present an experimental evaluation on the impact of the new provenance com-

putation strategy on time and memory usage at evaluation as well as at proof tree

construction time. For the experiments, we implemented two variations of reachability

analysis over control flow graphs (CFGs). We built a translation unit that translates

an internal representation of CFGs used by SonarSource analysers to Datalog, giving

access to a front-end for Java, PHP and C# programs. For the experiments, the analyses

were run over a set of mature real world open source projects in Java and PHP. For both

variations of the analysis, the new provenance computation yielded a significant speed

up in the proof tree computation time, reaching a speed up as high as 80% for one of the

two variants. The overhead in evaluation time was between 20% and 50% depending on

the considered setup. The memory overhead ranged from 50% to 180%.

3

https://github.com/ssallinger/souffle

Introduction

1 //Input: edge relation

2 .decl edge(x:number , y:number)

3

4 edge(1, 2).

5 edge(2, 3).

6 edge(3, 4).

7 edge(4, 5).

8 edge(5, 4).

9

10 // Output: path relation

11 .decl path(x:number , y:number)

12 .output path

13

14 //r1:

15 path(x, y) :-

16 edge(x, y).

17

18 //r2:

19 path(x, y) :-

20 path(x, z),

21 edge(z, y).

Listing 1.1 – Example datalog program

1 2 3 4 5

Figure 1.1 – Input grph for transitive closure example

1.2 Motivation and Running Example

This section presents the key idea of our provenance computation on a simple example. We

use this example throughout the thesis to illustrate concepts introduced in this work.

Datalog programs specify logical rules over a set of relations. Consider the Datalog program

shown in Listing 1.1. It specifies rules for deriving the path relation, a relation representing the

transitive closure of a graph, from the edge relation which contains the input facts describing

the edges of the graph. In this small example, the facts are directly encoded in the program.

Alternatively, Soufflé provides an option for reading input facts from external files. The graph

used in this example is displayed in Figure 1.1.

The path relation represents the set of pairs of nodes in the graph that are connected by a

path. In this example, two rules are used to add tuples to this relation. The first rule, rule r1,

4

1.2. Motivation and Running Example

1 edge(1, 2)

2 -----------(r1)

3 path(1, 2) edge(2, 3)

4 --------------------------(r2)

5 path(1, 3) edge(3, 4)

6 ---(r2)

7 path(1, 4) edge(4, 5)

8 -- (r2)

9 path(1, 5)

Listing 1.2 – Example proof tree

specifies that two nodes are connected by a path if there is an edge between them. The second

rule, rule r2 encodes the transitive property, i.e. there is a path between two nodes if there is a

path from the first node to an intermediary node which is connected to the second node by an

edge.

The path relation is marked as output relation which means that its tuples will be written to

a file after completion of the evaluation. In general, only a subset of the computed relations

is marked as output. The relations marked as output are what we consider the results of a

Datalog program.

One of the tuples in the path relation is path(1, 5). The tuple’s proof tree is displayed

in Listing 1.2. The nodes of the proof tree are labelled by tuples. Every level of the proof tree

explains which rule was applied to which body tuples in order to generate the new tuples.

For example, the root of the proof tree in Listing 1.2, denoted at the very bottom is tuple

path(1, 5). The next level explains that this tuple can be generated by applying rule r2 to

body tuples path(1, 4) and edge(4, 5).

The crucial operation in proof tree construction is the search for the body tuples that were

used to generate a given tuple. Soufflé annotates tuples with the height of their proof trees and

the used rule during evaluation in order to guide this search. The height parameter is used to

restrict the search for body tuples to tuples with smaller height than the current height. For

example, the height of the proof tree of path(1, 5) is 4. In the search for body tuples, the

algorithm looks for path tuples starting in 1 with heights smaller than 4. Hence, it considers

tuples path(1, 3) and path(1, 4).

5

Introduction

The new provenance component introduced here additionally annotates tuples with the

heights of their body tuples. In the considered example, this means that when the search for

body tuples of path(1, 5) is started, it is known that the path body tuple has height 3. Hence,

only tuple path(1, 4) is taken into account and the additional annotation is used to prune

the search space. For large examples, this optimisation can dramatically reduce the runtime

of the search. The search algorithms are explained in detail in Chapters 3 and 4.

1.3 Overview

This thesis is organised as follows: Chapter 2 surveys related work. Chapter 3 provides back-

ground information about Datalog evaluation and proof tree construction algorithms with

a focus on the algorithms used in Soufflé. Chapter 4 presents the framework for the newly

introduced provenance algorithms and their implementation in Soufflé. Chapter 5 presents

experiments that demonstrate the effectiveness of the new provenance component and dis-

cusses the results. Chapter 6 concludes with an analysis of the main results and outlines ideas

for future work.

6

2 Related Work

In this section, we describe related work about provenance in database systems and in partic-

ular about provenance for Datalog programs.

In the database research community, provenance is described as an explanation of the origin

of data in a system [10, 13]. It provides a connection between output data and the input data

that was used to generate it. In big database systems, provenance information can be used to

establish the integrity of data [13] and for debugging purposes [20]. Two example systems that

implement provenance for relational databases are Trio [7] and Perm [16].

Regarding the semantics of provenance, we can find several definitions in the literature. In

[13], three different approaches are presented. The first approach is called Why-provenance

which defines the provenance of a tuple as the set of input tuples that were involved in the

tuple’s generation. The second approach is referred to as How-provenance. It extends Why-

provenance with the structure of a proof of how the input tuples were used to produce the

output. This is formalized by associating each tuple with a special algebraic structure referred

to as provenance semiring. The third approach is Where-provenance. In this approach, the

origin of every element of a tuple is explained.

A natural way of describing provenance for Datalog programs is by specifying proof trees [3].

A tuple’s proof tree fully explains how the tuple was derived from the input facts by rule

applications. Hence, proof trees can be seen as a generalization of How-provenance.

Provenance in Datalog has been an active field of research [3, 11, 20, 22] outside the Soufflé

engine. In [3], the idea of representing Datalog provenance in the form of proof trees is

established. In [11], a debugging strategy for Datalog based on the principles of algorithmic

debugging is presented. In [20], an alternative way of computing provenance information by

generating a provenance-enriched rewriting is introduced. In [22], an approach for computing

provenance for Datalog programs with negations is presented.

What distinguishes Soufflé’s provenance component from these previous approaches is that,

in general, those approaches rely on storing the full provenance information at evaluation

7

Related Work

time which results in a memory overhead that is intractable for large-scale databases. It has

been proposed to mitigate this high memory overhead by selectively storing provenance

information for a predefined provenance query [14]. However, this means that the Datalog

evaluation has to be repeated for every query of interest.

While the core application of most Datalog provenance systems is debugging, Datalog prove-

nance is also used in different applications. Another line of work that relies on provenance

information are Datalog based user-guided program analyses, which rank analysis alarms

based on user feedback [23, 31, 24]. The optimized provenance computation presented in this

thesis potentially is of special relevance to this line of work, as, in this setup, provenance infor-

mation needs to be computed for all outputs of the program analysis. Hence, this computation

takes a significant part of the overall analysis run time.

A presentation of Soufflé’s provenance component is given in the following chapter. For a

more in-depth discussion of how Soufflé’s provenance compares to related work see [32, 33].

8

3 Preliminaries

3.1 Datalog evaluation

The two main Datalog evaluation strategies are bottom up and top down evaluation [1]. In

bottom up evaluation, all possible facts are derived by applying the rules starting from the

input facts. Top down evaluation proofs given facts of interest by applying the rules starting at

those facts until the input facts are reached. In order to deal efficiently with large scale data,

modern state of the art engines are mostly based on bottom up evaluation. As this is also the

case for Soufflé, we give a short description here.

Standard bottom up evaluation of a Datalog program works by applying its constituent rules

on a set of input tuples generating potentially new tuples. The new tuples are added to the

current set and the rules are applied until a fixpoint is reached. For the example of computing

paths in graphs introduced in Chapter 1, Listing 3.1 presents the iterations of the fixed point

computation.

Formally, bottom up evaluation can be defined as a computation over a subset lattice defined

over sets of tuples. Those sets of tuples are referred to as instances I. The naïve evaluation

algorithm applies the so called immediate consequence operator on the current instance until

fixpoint. The immediate consequence operator takes an instance and adds all tuples that can

be generated by performing all possible rule applications on the tuples in the instance [1].

There are multiple variations of this basic evaluation strategy. In particular, Soufflé uses a more

efficient strategy referred to as semi-naive evaluation [27]. The core advantage of semi-naive

evaluation is that it avoids recomputing all tuples in every iteration.

3.1.1 Magic Set Transformation

Top down Datalog evaluation has an intrinsic performance advantage compared to bottom

up evaluation if only a small fraction of the generated tuples is of interest for the user. For

example in Soufflé, the user is only interested in the tuples in relations marked as output.

9

Preliminaries

1 Iteration 1:

2 --------------

3 path(1, 2)

4 path(2, 3)

5 path(3, 4)

6 path(4, 5)

7 path(5, 4)

8

9 Iteration 2:

10 --------------

11 path(1, 3)

12 path(2, 4)

13 path(3, 5)

14 path(4, 4)

15 path(5, 5)

16

17 Iteration 3:

18 --------------

19 path(1, 4)

20 path(2, 5)

21

22 Iteration 4:

23 --------------

24 path(1, 5)

Listing 3.1 – Iterations of bottom up evaluation

10

3.2. Provenance in Soufflé

1 edge(1, 2)

2 -------(r1)

3 path(1, 2) edge(2, 3)

4 -------------------(r2)

5 path(1, 3)

Listing 3.2 – Example proof tree

With standard bottom up evaluation all other relations will be computed, even if only a small

fraction of their tuples might be involved in the generation of the output tuples.

The key idea of the magic set optimization is to rewrite the Datalog rules prior to bottom up

evaluation, in order to avoid generating tuples that will never be needed for the generation

of the output tuples [6]. The transformation specialises the rules based on constraints that

appear in their bodies and in the bodies of their dependencies. The magic set transformation

implemented in Soufflé is based on the algorithm presented in [5].

3.2 Provenance in Soufflé

In this section, we give an overview of Soufflé’s current provenance component [33], regarding

its functionality, its core algorithms and the implementation.

3.2.1 Proof Trees

Soufflé provides an option for computing provenance information in the form of minimal

height proof trees. If Soufflé is run with the provenance option turned on, after the evaluation

of the Datalog program, an interactive query interface is started. In the query interface, users

can prompt the system to compute proof trees for any of the output tuples.

A proof tree provides a detailed explanation of which rules where involved in the generation of

a tuple and which body tuples where used in the application of those rules. A proof tree for a

tuple t is a tree where each node is labelled with a tuple. The root of the tree is labelled with t .

The leaves of the tree are labelled with input facts. Every inner node labelled with a tuple t0

is associated with a rule r such that r can be used to derive t0 : −t1, ..., tn and the direct child

nodes of t0 are labelled with t1, ..., tn .

For an example of a proof tree, see Listing 3.2. The tree describes why tuple (1, 3) was

added to the path relation in the example Datalog program for computing transitive closures

in graphs introduced in Section 1.2. It was generated by applying rule r2 on body tuples

path(1, 2) and edge(2, 3). Tuple path(1, 2), in turn, was generated applying rule r1 on

the input fact edge(1, 2).

11

Preliminaries

As standard bottom up evaluation does not yield any information about tuples’s proof trees,

Soufflé’s computes proof trees in a two step approach. First, it adds proof annotations to

generated tuples during bottom up evaluation and then uses these annotations in a top

down proof tree construction algorithm. As the top down proof tree search is performed

on an already populated Datalog instance, a subproof is guaranteed to exist for every tuple.

This brings two core advantages compared to an approach relying excursively on top down

evaluation. Firstly, the search algorithm does not have to use backtracking and can hence

perform a faster search. Secondly, this allows for the construction of partial proof trees which

turns out to be very useful for providing an interactive user interface.

The key operation in the second step of Soufflé’s approach, proof tree construction, is to find

for a given tuple which rule and body tuples were used in its generation. Unsurprisingly,

there are various approaches to compute this information. One simple option is to store

the generating rule and the used body tuples for every generated tuple during bottom up

evaluation. While this makes the proof tree construction trivial and very fast, the additional

memory usage is prohibitively large even for relatively small Datalog programs [32].

Another option is not to store any additional information during bottom up evaluation but to

perform a brute force search for body tuples on the generated Database instance. However,

for databases with millions of tuples this approach is very inefficient. Also no guarantees can

be made for the minimality of proof trees.

To overcome these inefficiencies, Soufflé adds constant size proof annotations to tuples at

evaulation time. While still allowing for a more efficient search, the annotations do not incur a

prohibitively large memory overhead. The next two sections describe how those annotations

are generated and how they are used for constructing proof trees.

3.2.2 Proof Annotations

Soufflé annotates every tuple with the identifier of the rule that was used for its generation

and with the height of its proof tree. At the moment where a new tuple is generated during the

evaluation, it is straightforward to know which rule is used for its generation. The height of

the proof tree that corresponds to the currently generated tuple can be computed by taking

the maximum of the heights of the proof trees of the body tuples and adding one. The height

of facts is set to zero. Listing 3.3 shows the annotated version of the tuples of the graph

reachability example introduced in Chapter 1. For example, the annotations for the tuple

path(1, 3) tell us that the tuple was generated using rule r2 and that the height of its proof

tree is 2. This corresponds to the height of the tuple’s proof tree displayed in Listing 3.2.

12

3.2. Provenance in Soufflé

1 edge

2 original tuple rule height

3 1 2 - 0

4 2 3 - 0

5 3 4 - 0

6 4 5 - 0

7 5 4 - 0

8

9 path

10 original tuple rule height

11 1 2 1 1

12 2 3 1 1

13 3 4 1 1

14 4 5 1 1

15 5 4 1 1

16 1 3 2 2

17 2 4 2 2

18 3 5 2 2

19 4 4 2 2

20 5 5 2 2

21 1 4 2 3

22 2 5 2 3

23 1 5 2 4

Listing 3.3 – Proof annotations for path example

13

Preliminaries

At the syntactical level, Soufflé treats the annotations as additional attributes, i.e. columns, of

the relations. This is implemented by rewriting the rules before evaluation starts. A relation

R(x) is transformed into R(X, @rule, @height). A rule

ri : R(X) : −R1(X1), ...,Rk (Xk).

is transformed into

ri : R(X , i ,max(@hei g ht1, ...,@hei g htk)+1) : −R1(X1,_,@hei g ht1), ...,Rk (Xk ,_,@hei g htk).

3.2.3 Provenance Evaluation Strategy

Adding proof annotations requires some changes in the semantics of bottom up evaluation

described in Section 3.1. As proof annotations are treated as additional attributes, using the

standard fixpoint computation would generate all possible annotations for every original tuple.

However, given that there are potentially infinitely many proof trees with different heights

for every tuple, generating a new tuple for every possible height annotation would result in

non-terminating executions. Consider for example proof trees for the tuple path(4, 5) in

the running example. The cycle between node 4 and node 5 can be taken infinitely often to

construct a path, yielding a possible proof tree with a bigger height every time.

To ensure termination, the adapted evaluation is required to add each original tuple only

once, i.e. the proof annotations have to be unique for every original tuple. The key idea for

ensuring uniqueness in Soufflé’s provenance evaluation, is to check at the generation of a

new tuple whether another tuple with the same original values already exists and if the height

annotation of the newly generated tuple is smaller than the height annotation of the already

existing tuple. If this is the case, the proof annotations are updated instead of adding the

second tuple. If the height annotation of the newly generated tuple is greater than the height

annotation of the already existing tuple, no updates will be performed. Since the first tuple

found will have some finite height annotation k and tuples cannot have height annotations

smaller than 0, there will be at most k updates for this tuple. This reasoning follows for every

tuple and thus ensures the termination of the procedure. As a consequence of this approach,

the unique final height annotation is minimal amongst all possible annotations and thus

represents the height of a minimal height proof tree.

The adapted semantics can be formalized by defining the fixpoint computation over a spe-

cial provenance lattice instead of the usual subset lattice. The provenance lattice is formed

over pairs (I ,h), where I is a set of generated tuples and h : I−>N0 is a function describing

the smallest proof tree height discovered so far for every tuple in I . The order ⊑ of the lattice is

defined by

(I1,h1) ⊑ (I2,h2) ⇐⇒ I 1 ⊆ I 2∧∀t ∈ I1 : h1(t) ≥ h2(t)

14

3.2. Provenance in Soufflé

Simply put, a pair is further up in the lattice if it contains more tuples and the height annota-

tions of those tuples are smaller. For more details, refer to [33].

Implementation

Soufflé’s data structures are optimized to perform efficient updates of provenance annotations

by updating the provenance attributes of the tuple that is already part of the internal data

structure instead of deleting the existing tuple and inserting a completely new tuple.

Internally, in Soufflé every database tuple is stored in one or more specialized B-tree data

structures [19]. In the B-tree, tuples are stored sorted by the values of their attributes. The

order in which the attributes are taken into account for sorting is determined by a parameter

of the data structure referred to as index ordering. Consider for example a relation with three

attributes A, B, C. If the index ordering is e.g. (B, C, A), tuples will first be compared by attribute

B, then by attribute C and then by attribute A.

Every index ordering efficiently supports those searches that specify a set of attributes that

form a prefix of the index ordering. For example index order (B, C, A) efficiently supports

queries specifying no value, a value for B, values for B and C, or specifying values for all three

attributes. In order to efficiently support search queries that specify different sets of attributes,

several B-trees with different index orderings might be used to store the same relation [28].

Performing in-place updates of proof annotations is only a valid operation if the update

preserves the tuples position in the index with regards to the index ordering. In Soufflé’s

provenance evaluation, this is assured by allowing only index orderings that have the height

and rule attributes in the last two positions. This means that the resulting indexes only support

searches specifying proof annotations if also all other values of the original tuple are specified.

As proof annotations are never used for index lookups, neither during the evaluation nor

during proof tree construction, this restriction does not pose a problem in Soufflé’s current

provenance component. However, as will be explained in Section 4.4, it presented a challenge

for the implementation of the modified proof construction algorithm proposed in this thesis.

3.2.4 Proof Tree Generation

The proof tree generation component takes as input the annotated database of tuples gener-

ated in the bottom up evaluation and a specific tuple given by the user query. As explained

above, the essential operation for constructing one level of a proof tree is to find for a tuple t

that is annotated by rule ri body tuples t1, ...tk , where ri : t : −t1, ..., tk . This search will first be

executed for the input, i.e. root tuple, and then applied recursively on all found body tuples

until all body tuples are facts.

As the database was generated by a valid run of bottom up evaluation, it is ensured for every

database tuple that corresponding body tuples exist is the database. From the fact that the

15

Preliminaries

height of the tuple t was computed by adding 1 to the maximum height of the body tuples,

one can conclude that every body tuple has a height less than the height of t . This is used to

constrain the top down search.

For example if a user asks for a proof tree for the tuple path(1, 4), first a look up for the

tuple’s height and rule annotation will be done. As can be seen in Listing 3.3, the tuple was

generated by rule r2 and has height 3.

Therefore a search for the body tuples will be performed with the following constraints:

path(x, z,, h1),

ed g e(z, y,, h2),

x = 1,

y = 4,

h1 < 3,

h2 < 3.

In Soufflé, the search is implemented by a index nested loop join on the body relations. That

is, there is a loop nest with one loop per body relation. The constraints are used to filter the

tuples returned by the index lookup. The fewer tuples pass the filter, the fewer tuples have to

be compared with tuples of the next relation of the join. Algorithm 1 provides a more detailed

description of the computation.

The construction of the first level of the proof tree for tuple path(1, 4) works as follows.

In the first step, an index is used to retrieve all path tuples starting in node 1. As can be

checked in Listing 3.3, this will return the tuples path(1, 2), path(1, 3), path(1, 4) and

path(1, 5). In the next step, the tuples are filtered by the constraint h1 < 3, which results

in potential body tuples path(1, 2) and path(1, 3), thereby removing branches from the

search that will not yield results. Then, the first loop of the join iterates over these tuples and

uses them as the basis for index lookups in the edge relation. The first lookup searches for

edges that could we combined with potential body tuple path(1, 2), i.e. the index is queried

for edges from 2 to 4. As such an edge does not exist, the next potential body tuple path(1, 3)

is taken into account and a lookup for edges from 3 to 4 is done. The result consists of one

tuple, edge(3, 4). After filtering the result by constraint h2 < 3, tuples path(1, 3) and

edge(3, 4) are added to the final set of body tuples and the construction of the proof tree

level is done.

16

3.2. Provenance in Soufflé

Algorithm 1 Search for body tuples

Input
I Database instance
t Original non-annotated tuple

Output
t1, ..., tk body tuples generating t , i.e. t : −t1, ..., tk

1: Find t ′ ∈ I such that t ′ = (t ,r,h) where r denotes rule

R(X0,r,max(h1, ...,hk)) : −
R1(X1,_,h1),

...,

Rk (Xk ,_,hk).

2: S1 := {(t1,_,h1) ∈ R1| t1 satisfies the constraints derivable from tuple values t }
3: for all (t1,, h1) ∈ S1 do
4: if h1 < h then
5: S2 := {(t2,_,h2) ∈ R2| t2 satisfies the constraints derivable from tuple values t and t1}
6: for all (t2,, h2) ∈ S2 do
7: if h2 < h then
8: ...
9: Sk := {(tk ,_,hk) ∈ Rk |

tk satisfies the constraints derivable from tuple values t and t1, ..., tk−1}
10: for all (tk ,, hk) ∈ Sk do
11: if hk < h then
12: return t1, t2, ..., tk

13: end if
14: end for
15: end if
16: end for
17: end if
18: end for

17

4 Subtree-heights Provenance

In this chapter, we introduce subtree-heights provenance, an alternative way of computing

proof trees for outputs of Datalog analyses in Soufflé. We present the framework for the newly

introduced provenance algorithms and their implementation in Soufflé.

4.1 Key intuition

While the proof annotations used in Soufflé’s provenance help in guiding the search for body

tuples, there is still potential for further restricting the search space. Consider our running

example of computing paths in a graph. The constraints enforce that only paths in the proof

tree with heights smaller than the height of the original path are considered. However, given

that the path body tuple is the only body tuple that is not a fact and all facts have height 0,

it can be concluded that the path body tuple has the biggest height of all body tuples. By

inverting the function that computes a tuple’s height from the heights of its body tuples by

taking the maximal body tuple height plus 1, we can conclude that the height of the path body

tuple equals the height of the original tuple minus one. Therefore, stricter constraints could

be used to find the body tuples in less steps:

path(x, z,, h1),

ed g e(z, y,, h2),

x = 1,

y = 4,

h1 = 2,

h2 = 0.

To see how those constraints help reducing the search space, consider again the steps of

the algorithm for computing the proof tree of tuple path(1, 4) illustrated at the end of the

previous chapter. The difference will be that the constraint h1 = 2 will restrict the result of

19

Subtree-heights Provenance

potential path body tuples to the tuple path(1, 3), hence, cutting the branch path(1, 2),

avoiding the unnecessary further index lookups that are based on this branch and conse-

quently reducing the runtime of the search. A similar reduction of the search space can be

applied for arbitrary rules if, at proof construction time, the heights of the minimal proof trees

of the body tuples is known.

4.1.1 Proof annotations

The core idea of the new provenance mechanism, subtree-heights provenance, is to store

the height of the body tuples in addition to Soufflé’s rule and height annotation during the

evaluation. We will show now how to use these annotations to further reduce the search space

during the top down proof tree construction.

Similarly to the other proof annotations, at a syntactical level, the subtree height annotations

are treated as additional attributes and the rules are transformed accordingly before the start

of the evaluation. A relation R(x) is transformed into

R(X ,@r ul e,@hei g ht ,@hei g ht1, ...,@hei g htn)

where n denotes the maximal number of body clauses amongst all rules generating tuples of

relation R . The number of additional height parameters is set to the maximum, as this ensures

that all tuples of the relation have the same number of attributes.

A rule

ri : R(X) : −
R1(X1),

....,

Rk (Xk).

is transformed into

ri : R(X , i ,max(@hei g ht1, ...,@hei g htk)+1,hei g ht1, ...,@hei g htk ,−1, ...,−1) : −
R1(X1,_,@hei g ht1,_, ...,_),

...,

Rk (Xk ,_,@hei g htk ,_, ...,_).

The rule number and first height parameter of the relation are computed in the same way as

for Soufflé’s provenance. Then k additional height parameters are added, one per body clause

of the rule. The i th additional height parameter represents the height of the i th body tuple.

20

4.2. Subtree-heights Provenance Evaluation Strategy

1 edge

2 original tuple rule height

3 1 2 - 0

4 2 3 - 0

5 3 4 - 0

6 4 5 - 0

7 5 4 - 0

8

9 path

10 original tuple rule height subheights

11 1 2 1 1 0 -1

12 2 3 1 1 0 -1

13 3 4 1 1 0 -1

14 4 5 1 1 0 -1

15 5 4 1 1 0 -1

16 1 3 2 2 1 0

17 2 4 2 2 1 0

18 3 5 2 2 1 0

19 4 4 2 2 1 0

20 5 5 2 2 1 0

21 1 4 2 3 2 0

22 2 5 2 3 2 0

23 1 5 2 4 3 0

Listing 4.1 – Extended proof annotations for path example

As above, let n denote the maximal number of body clauses amongst all rules generating tuples

of relation R. The last n −k attributes of all generated tuples are set to −1, as no body clauses

exist for these positions and therefore the corresponding height parameters are undefined.

The non-existing heights are encoded as −1, as this ensures that when height parameters

of two tuples are compared, the missing height parameter corresponding to a non-exisitng

subtree is smaller than the height parameter of any existing subtree.

Listing 4.1 shows the tuples of the path example with the additional annotations.

4.2 Subtree-heights Provenance Evaluation Strategy

While the height of the body tuples is easy to compute at evaluation time, similarly to Soufflé’s

provenance, it is necessary to refine the bottom up evaluation strategy. In particular, the

update mechanism has to be adapted to take into account the additional subtree height

annotations.

21

Subtree-heights Provenance

As outlined in Section 3.2.3, Soufflé’s provenance evaluation is a fixpoint computation over

pairs of instances and height metrics (I ,h).

According to [33], Soufflé’s provenance evaluation strategy can be adapted for different proof

tree metrics by redefining the function h, as long as h : I → X satisfies the following conditions:

1. There is a partial order ⪯ on the codomain X that can be used for updating tuples with

smaller annotations.

2. The function h can be compositionally computed from the body tuples, i.e. for a rule

t : −t1, ..., tn , it can be computed as h(t) = f (h(t1), ...,h(tn)).

3. The function h is monotone and bounded. That is, for a rule t : −t1, ..., tn and any

1 ≤ i ≤ n it holds that h(ti) ⪯ h(t). Furthermore, there is a minimum value c such that

c ⪯ h(t) for any tuple t .

For subtree-heights provenance evaluation, we define a new proof tree metric h̄ : I → X where

X =
{

(h0,h1, ...,hn)
∣∣∣ n ∈N0, h0 ∈N0, hi ∈N0 ∪ {−1} ∀ 1 ≤ i ≤ n

}
Let h denote the usual proof tree height metric that is used in Soufflé. The function h̄ maps

every database tuple t0 that was generated by rule t0 : −t1, ..., tk in a relation with n additional

height parameters to a tuple of height annotations (h0,h1, ...,hn), where hi = h(ti) for all

0 ≤ i ≤ k and hi =−1 for all k < i ≤ n. That is, the first entry h0 is defined as the minimal proof

tree height of t0 and the rest of the height annotations h1, ...,hk describe the minimal proof

tree heights of the body tuples and hk+1, ...,hn are set to −1 encoding non-existent height

parameters.

Let us now show that that h̄ satisfies the required properties of proof tree metrics. The first

requirement of having a partial order ⪯ on the codomain can be fulfilled by defining ⪯ as the

lexicographical order over tuples of height annotations that compares the respective elements

using ≤ overN0 ∪ {−1}. The partial order properties of ⪯ follow trivially from the partial order

properties of ≤.

Regarding compositionality, h̄ can be computed as h̄(t) = (h(t), h̄(t1)[0], ..., h̄(tk)[0],−1, ...,−1),

where h̄(ti)[0] denotes the first entry of the height tuple of database tuple ti for all 1 ≤ i ≤ k.

For showing the monotonicity of ⪯, we need to show that h̄(ti) ⪯ h̄(t) for an arbitrary i with

1 ≤ i ≤ k. By the definition of ⪯, h̄(ti) and h̄(t) are compared lexicographically. The first

component of h̄(ti) is h(ti) and the first component of h̄(t) is h(t). From the fact that h(t)

is defined as the maximum of the body tuple heights plus one, it follows that h(ti) < h(t).

Therefore, h̄(ti) ⪯ h̄(t) holds independently of the values of the other elements in the tuples

and monotonicity is shown. A lower bound is given by the tuple (0,−1, ...,−1) consisting of a

entry with value 0 followed by n entries with value −1, as the first height parameter has lower

22

4.3. Proof tree generation

bound 0 and the additional height parameters have lower bound −1. This shows that Soufflé

provenance with subtree heights annotations is a valid provenance evaluation strategy.

4.3 Proof tree generation

As in Soufflé’s provenance, the search for body tuples is implemented by an indexed nested

loop join on the body relations. However, the sub-height constraints are now part of the index

lookup instead of being enforced in an additional filter operation. Algorithm 2 outlines the

steps for body tuple search using the additional annotations.

Algorithm 2 Search for body tuples using additional height annotations

Input
I Database instance
t Original non-annotated tuple

Output
t1, ..., tk body tuples generating t , i.e. t : −t1, ..., tk

1: Find t ′ ∈ I such that t ′ = (t ,r,h,h1, ...,hk) where r denotes rule

R(X0,r,h,h1, ...,hk) : −
R1(X1,_,h1,_, ...,_),

...,

Rk (Xk ,_,hk ,_, ...,_).

2: S1 := {(t1,_,h′
1,_, ...,_) ∈ R1| h′

1 = h1 and
t1 satisfies the constraints derivable from tuple values t }

3: for all (t1,_,h′
1,_, ...,_) ∈ S1 do

4: S2 := {(t2,_,h′
2,_, ...,_) ∈ R2| h′

2 = h2 and
t2 satisfies the constraints derivable from tuple values t and t1}

5: for all (t2,_,h′
2,_, ...,_) ∈ S2 do

6: ...
7: Sk := {(tk ,_,h′

k ,_, ...,_) ∈ Rk | h′
2 = h2 and

tk satisfies the constraints derivable from tuple values t and t1, ..., tk−1}
8: for all (tk ,_,h′

k ,_, ...,_) ∈ Sk do
9: return t1, t2, ..., tk

10: end for
11: end for
12: end for

With subtree-heights provenance, the construction of the first level of the proof tree for tuple

path(1, 4) works as follows. In the first step, an index is used to retrieve all path tuples

23

Subtree-heights Provenance

starting in node 1 that have height 3. As can be checked in Listing 4.1, this will return only

the tuple path(1, 3). Then, the first loop of the join uses this tuple as the basis for an index

lookup in the edge relation, that searches the index of the edge relation for edges from 3 to 4

with height 0. As the corresponding edge is found, tuples path(1, 3) and edge(3, 4) are

added to the final set of body tuples and the construction of the proof tree level is done.

4.4 Implementation in Soufflé

The implementation of subtree heights provenance is publicly available at https://github.

com/ssallinger/souffle.

Updates during evaluation are implemented in the same way as for Soufflé’s original prove-

nance. Every time a new tuple is inserted, a check is performed to see whether a tuple with the

same entries for the original, non-provenance, attributes already exists. If this is the case, the

new tuple is only inserted if the sequence of its height annotations is lexicographically smaller

than the sequence of height annotations of the existing tuple.

As mentioned in Section 3.2.3, for efficiency reasons updates of proof annotations are not

implemented by deleting the old tuple and inserting a new tuple but by making an in-place

update in the data structure. This is only a valid operation if the update preserves the tuples

position in the index with regards to the index ordering.

However, as explained above, subtree-height provenance relies on using the height parameter

in index lookups. Such searches are only supported by indexes that order the height annotation

before other attributes of the original tuple. Hence, there is a conflict between the different

requirements on index orders.

In the implementation of subtree-heights provenance, this conflict of requirements is solved

by constructing the indices that support lookups by height parameter only after the evaluation

has terminated, by inserting all tuples of one of the other indexes.

It might be worth exploring the performance characteristics of an alternative approach that

applies the height constraint only as a filter after doing the index lookup, similar to what is

done in Soufflé’s proof tree construction.

24

https://github.com/ssallinger/souffle
https://github.com/ssallinger/souffle

5 Experimental Evaluation

In this chapter, we present an experimental evaluation of subtree-heights provenance in

Soufflé by measuring its impact on the performance of the bottom up evaluation and proof

construction phases. In particular, we check the validity of the following hypotheses:

Hypothesis 1 Subtree-heights provenance reduces the number of index lookups at proof tree

construction time and, hence, reduces the runtime of this phase.

Hypothesis 2 Subtree-heights provenance runtime overhead on the bottom up time is not

prohibitive.

Hypothesis 3 Subtree-heights provenance does not incur in dramatic memory overhead,

neither during evaluation nor proof construction.

Hypothesis 4 The above hypotheses also hold with Soufflé’s magic set transformation.

In order to find evidence for those hypotheses, we compare subtree-heights provenance to

the provenance computation as it is currently implemented in Soufflé (see Section 3.2) and,

where applicable, to the execution of Soufflé without any provenance instrumentation.

5.1 Experimental Setup

The evaluation is done with two program analyses implemented in Soufflé. These analyses

compute reachability between nodes, i.e. basic blocks, in a program’s control flow graph (CFG)

with different degrees of sensitivity. We chose these analyses since reachability between basic

blocks are the basis for important classes of program analysis such as information flow. In

particular, we focus on taint analyses which identify pairs of program locations (source, sink)

that represent program locations where malicious users can inject data (source) and locations

where such malicious data reaches potential sensitive information (sink). The analyses are run

over a set of mature real world open source projects in Java and PHP. In the following sections,

25

Experimental Evaluation

Java

uCFG

PHP

Datalog
facts

Result
tuples

Proof
trees

Figure 5.1 – Analysis pipeline

we give a detailed description of the analysis pipeline, the properties of the implemented

analyses, and the input programs.

5.1.1 Analysis Pipeline

Figure 5.1 presents components of the analysis pipeline from the original program to the

results of the analysis. In a first step, we retrieve the program’s CFG. The implementation

of this step relies on a transformation from programs written in Java and PHP to a common

intermediate representation called uCFG, implemented in the current SonarSource taint an-

alyzers. An open source version of Sonar uCFG, the library implementing the intermediate

representation, is available at [26]. The analysis generates one uCFG per function consisting

of its signature and basic blocks representing the intraprocedural CFG. A basic block follows

similar design principles as the LLVM IR language [21] and consists of a sequence of instruc-

tions and a terminator indicating the reason for the change in control flow, i.e., the reason why

this basic block ends. As usual, a terminator is a return or a jump to another basic block in

which case it contains the destination basic block.

The next step is to compute a database of Datalog facts representing the CFG. The database

consists of one or more Datalog relations containing the CFG’s edges, i.e. pairs of nodes. Nodes

are represented by globally unique names composed of the name of the function they belong

to and a local identifier within the function. If the subsequently performed analysis does not

need to distinguish intra- and interprocedural, all edges can be stored in the same relation.

Otherwise, one relation will be created per edge type.

Datalog facts for intraprocedural edges can easily be generated from the uCFGs by inspecting

for every basic block the references that it stores to its successors. Interprocedural edges

are not modeled explicitly in uCFGs and require special treatment. Additional edges need

to be added between basic blocks that contain function calls and basic blocks of the called

26

5.1. Experimental Setup

function. For the Datalog representation, if a basic block contains a function call, the basic

block will be modeled by two nodes. The first node represents the part of the basic block

containing all instructions up to and including the function call. The second part represents

the continuation of the basic block containing instructions that will be executed after the

function call returns. A Datalog fact is written for the call edge from the node corresponding to

the first part of the basic block to the entry basic block of the called procedure. Furthermore,

facts representing return edges from every return basic block of the called procedure to the

continuation node of the calling basic block are added. In order to identify which function

implementation to use for virtual calls, we rely on the call graph that is computed by the

SonarSource analyzer based on the Variable Type Analysis algorithm [29]. Note uCFGs are

usually not available for library functions. Therefore, calls to library functions are modelled by

inserting an edge between the node modelling the first part of the basic block and the node

modelling its continuation, hence, skipping the call to the unknown function.

In addition to the embedding of the CFG, two additional Datalog relations are created to

represent the set of source nodes and the set of sink nodes for the taint analysis. A basic block

is identified as source node if it contains a call to a function that takes input from the user

and as sink node if it contains a call to a function which executes a potentially dangerous

command, e.g. a direct execution of a SQL statement on a database.

Example

Consider for example the Java methods displayed in Listing 5.1. The function

getTheParameter reads input from the user by parsing an HTTP request. The func-

tion executeQuery executes a SQL query. The goal of the analysis is to find out

whether the HTTP parameter is used in the query. In the first step, the uCFGs are

computed. The result is displayed in Listing 5.2. The function getTheParameter con-

sists of two basic blocks, the function executeQuery consists of three basic blocks,

each consisting of several instructions and a terminator. While return terminators

specify the functions return value, jump terminators have a reference to the succes-

sors basic blocks. For example at the end of basic block 4 of executeQuery, a jump to

basic block 3 of the same function is performed. Listing 5.3 shows the Datalog tuples

that are generated for the interprocedural CFG in the next step of the pipeline. The

corresponding graphical representation is shown in Fig. 5.2. The blue nodes belong

to getTheParameter, the yellow ones to executeQuery. The names of the nodes

consist of the name of the corresponding basic block followed by an identifier for

the part of the basic block. As explained above, basic blocks are considered to be

split into parts at function call instructions. Consider for example basic block 4 of

executeQuery. It is modelled by two nodes with identifiers 4^0 and 4^1. Node 4^0

models the basic block up to the call to getTheParameter and has an outgoing edge

to all entry blocks of the called function. Node 4^1 represents the continuation and

has an incoming edge from every return block of the called function. Furthermore, it

27

Experimental Evaluation

1 public static String getTheParameter(String p, HttpServletRequest

request , double random) {

2 if(random < 0.5)

3 return request.getParameter(p);

4 else

5 return "superSecurePwd";

6 }

7

8 public void executeQuery(String p, HttpServletRequest request) {

9 String param = getTheParameter(p, request , 0.0);

10 String sql = "INSERT INTO users (username , password) VALUES (’

foo ’,’" + param + "’)";

11 try {

12 int count = statement.executeUpdate(sql ,new int[]{1, 2});

13 } catch (java.sql.SQLException e) {

14 e.printStackTrace ();

15 }

16 }

Listing 5.1 – Java functions to be represented in Datalog

has an outgoing edge to a node of the next basic block, basic block 3, modelling the

jump instruction in the end of basic block 4.

In the next step, the analysis rules are applied to the input database in order to compute the

output relation. In the case of reachability based taint analysis, the output relation contains

pairs of nodes where the first node is a source, the second node is a sink and there exists a

path between the two.

The last step of the analysis is to compute proof trees for the generated output tuples using

Soufflé’s built in provenance or the newly introduced subtree-heights provenance.

5.1.2 Analyses

Graph Reachability

Graph reachability is a basic component of many program analysis problems [25]. The first

analysis that we consider, presented in Listing 5.4, computes graph reachability in its most

basic form without distinguishing inter- and intraprocedural edges.

The analysis takes as input a relation describing the edges of the graph and two relations

describing sources and sinks. It then computes the two relations path and reachesSrcSink.

The path relation constitutes the core of the analysis. It describes that there is a path between

28

5.1. Experimental Setup

2ˆ0 4ˆ0 1ˆ0

2ˆ1 4ˆ1

3ˆ0

3ˆ1

0ˆ0

Figure 5.2 – CFG of the Java functions in Listing 5.1

1 // ucfgs for getTheParameter

2 bb2: // entry

3 %0 = getParameter[request , p]

4 return %0

5

6 bb1: // entry

7 return "superSecurePwd"

8

9 // ucfgs for executeQuery

10 bb4: // entry

11 %0 = call getTheParameter[p, request]

12 param = call __id [%0]

13 %1 = call __concat["INSERT INTO users (username , password)

14 VALUES (\’foo\’,\’", param]

15 %2 = call __concat [%1, "\’)"]

16 sql = call __id [%2]

17 jump 3

18

19 bb3:

20 %3 = call __id [statement]

21 %4 = call executeUpdate [%3, sql]

22 jump 0

23

24 bb0:

25 return

Listing 5.2 – uCFGs of the Java functions in Listing 5.1

29

Experimental Evaluation

1 // intraprocedural edges

2 getTheParameter .2^0 getTheParameter .2^1

3 executeQuery .3^1 executeQuery .0^0

4 executeQuery .3^0 executeQuery .3^1

5 executeQuery .4^1 executeQuery .3^0

6

7 // interprocedural edges

8 executeQuery .4^0 getTheParameter .2^0

9 executeQuery .4^0 getTheParameter .1^0

10 getTheParameter .2^1 executeQuery .4^1

11 getTheParameter .1^0 executeQuery .4^1

12

13 // sources

14 getTheParameter .2^0

15

16 //sinks

17 executeQuery .3^0

Listing 5.3 – Datalog facts corresponding to the Java functions in Listing 5.1

1 .decl edge(x:symbol , y:symbol)

2 .input edge

3

4 .decl src(x:symbol)

5 .input src

6

7 .decl sink(x:symbol)

8 .input sink

9

10 .decl path(x:symbol , y:symbol)

11 path(x, y) :- edge(x, y).

12 path(x, y) :- path(x, z), edge(z, y).

13

14 .decl reachesSrcSink(x:symbol , y:symbol)

15 reachesSrcSink(x, y):- src(x), sink(y), path(x, y).

16

17 .output reachesSrcSink

Listing 5.4 – Graph reachability analysis

30

5.1. Experimental Setup

1 .decl edge(x:symbol , y:symbol)

2 .input edge

3

4 .decl src(x:symbol)

5 .input src

6

7 .decl sink(x:symbol)

8 .input sink

9

10 .decl pathFromSrc(x:symbol , y:symbol)

11 pathFromSrc(x, y) :- edge(x, y).

12 pathFromSrc(x, y) :- src(x), pathFromSrc(x, z), edge(z, y).

13

14 .decl reachesSrcSink(x:symbol , y:symbol)

15 reachesSrcSink(x, y):- sink(y), pathFromSrc(x, y).

16

17 .output reachesSrcSink

Listing 5.5 – Efficient graph reachability analysis

two nodes if there is an edge between them or if their is a path from the first node to another

node that is connected to the second node by an edge. The relation reachesSourceSink

builds on the path relation by stating that a source is reachable from a sink if there is a path be-

tween them. Consider, for example, running the analysis on the Datalog facts from Listing 5.3.

The reachesSrcSink relation will contain one tuple (getTheParameter.2^0, executeQuery

.3^0).

For the experiments, we used a slight variation of the analysis that restricts paths to start in a

source not in the rule for reachesSrcSink, but in the construction of the paths itself, hence,

only computing paths starting in sources. The modified rules are displayed in Listing 5.5.

Note that the two versions of the analysis are equivalent in the sense that they produce the

same output. However, the modified version outperforms the original version in runtime

and memory usage during the bottom up evaluation and allows us to scale this analysis

to larger benchmarks where the first analysis would either time out or run out of memory

(see Appendix A.1 for experimental data supporting this claim). The improvement is due to

the fact that the number of source nodes is usually considerably smaller than the total number

of nodes and that therefore the pathFromSrc relation will be considerably smaller than the

path relation.

The analysis in Listing 5.5 is interprocedural, path-insensitive, 0-context-sensitive and partly

flow-sensitive. It is path-insensitive as conditions on branches are not considered.

31

Experimental Evaluation

As the calling context is not considered in the analysis of procedure calls, the analysis is

0-context-sensitive. Both constraints might lead to false alarms, e.g. in situations where a

function calls another function with a tainted parameter. If then a third function calls the

same function, the result might be considered tainted even though the tainted value cannot

reach the second call. The analysis is partly flow-sensitive as the order of basic blocks is taken

into account, while the order of instructions within the same basic block is ignored.

Context-Free-Language Reachability

The second analysis is a more precise graph reachability analysis. We consider this analysis

in our experiments in order to evaluate subtree-heights provenance in a more sophisticated

scenario with more complex rules.

As stated in the previous section, the basic graph reachability analysis might yield false alarms

because, in the construction of paths, the calling context is not taken into account and, hence,

values are considered to flow from one caller of a function to the continuations of all the callers

of the function. This source of imprecision can be overcome by considering Context-Free-

Language reachability (CFL-reachability) [25].

In CFL-reachability, edges are associated with labels and nodes are only considered to be

connected by a path if the concatenation of the labels of the edges on the path belongs to

the considered context-free-language. The particular context-free language that forms the

basis of the refinement is the language of matched parentheses defined over the alphabet

Σ= {e}∪ {(i | 1 ≤ i ≤ CallSites}∪ {)i | 1 ≤ i ≤ CallSites}. Call sites are assumed to have unique

identifiers. Every interprocedural edge describing a function call is associated with an opening

parenthesis. The return edge corresponding to this call is labelled with the corresponding

closing parenthesis. Intraprocedural edges are labelled by the constant symbol e. The language

is defined by the following productions:

matched →matched matched (5.1)

| (i matched)i for 1 ≤ i ≤ CallSites (5.2)

| e (5.3)

The Datalog rules for CFL reachability analysis are presented in Listing 5.6. Lines 20 to 25

implement the productions of the language. The path relation directly corresponds to the

matched non-terminal. The onestep relation is an intermediary step for computing paths

produced by productions 5.2 and 5.3.

Restricting the set of valid paths to paths with well balanced parentheses makes sure that taint

values at a call site can only flow along the continuation of the same call. However, in order to

perform a taint analysis it is not sufficient to consider only matched paths as defined above

between sources and sinks. The reason for this is that source and sink nodes do not have

to appear on the same level of nested function calls. However, matching paths enforce that

32

5.1. Experimental Setup

there is a match for every parenthesis while the real goal is to prevent scenarios where to two

parenthesis of different types would be matched. Still, matched paths can be used as a basic

block to define the class of paths not containing mismatched parentheses as described in the

following paragraphs.

To begin with, consider a scenario where a tainted value is read from a source at the outermost

level of nested calls, say in function main. The tainted value is then passed to another function

f, where it flows to a sink node. As there is an opening parenthesis for the call from main to f

but no closing parenthesis for the corresponding return on the path from the source to the

sink, the path is not well balanced even though it might be part of an execution of a program.

This scenario can be modeled by allowing call edges that are not followed by return edges

edges:

forward_realizable →forward_realizable matched (5.4)

| forward_realizable (i for 1 ≤ i ≤ CallSites (5.5)

| ε (5.6)

As in this definition all return edges are part of matched paths, mismatches between paren-

thesis corresponding to different call sites are still prevented. In the Datalog program, these

subpaths of well balanced paths are stored in relation forward that is computed by the rules

in lines 35 to 37 of Listing 5.6.

Another scenario to consider occurs if the tainted value is read in a called function and flows

to a sink in a calling function. This scenario can in turn be modeled by allowing return edges

that are not preceded by call edges:

backward_realizable →matched backward_realizable (5.7)

|)i backward_realizable for 1 ≤ i ≤ CallSites (5.8)

| ε (5.9)

In this case, all call edges are part of matched paths, such that mismatches between parenthesis

corresponding to different call sites are still prevented. In the Datalog program, these subpaths

of well balanced paths are stored in relation backward that is computed by the rules in lines

40 to 42 of Listing 5.6.

What remains to be solved is a third scenario where a taint source occurs in a called function

and is then passed to another function where the taint flows to a sink. This can be allowed by

considering paths that consist of a backwards reachable path, i.e. a path containing arbitrary

returns, followed by a forwards reachable paths, i.e. a path containing arbitrary calls. In this

case, parentheses mismatches are prevented by the fact that all closing parentheses that do not

have a matching partner occur before all opening parentheses that do not have a partner. That

is exactly how taint paths are computed in the reachesSrcSink rule in line 45 of Listing 5.6.

33

Experimental Evaluation

1 .decl edge(x:symbol , y:symbol)

2 .input edge

3

4 .decl continuation(x:symbol , y:symbol)

5 .input continuation

6

7 .decl call(x:symbol , y:symbol)

8 .input call

9

10 .decl ret(x:symbol , y:symbol)

11 .input ret

12

13 .decl src(x:symbol)

14 .input src

15

16 .decl sink(x:symbol)

17 .input sink

18

19 .decl path(x:symbol , y:symbol)

20 path(x, y) :- onestep(x,y).

21 path(x, y) :- onestep(x,z), path(z, y).

22

23 .decl onestep(x:symbol , y:symbol)

24 onestep(x,y) :- edge(x,y).

25 onestep(x,y) :- continuation(x, y), call(x, entry), ret(exit ,

y), path(entry , exit).

26

27 .decl node(x:symbol)

28 node(s) :- edge(s, _).

29 node(s) :- edge(_, s).

30 node(s) :- call(s, _).

31 node(s) :- call(_, s).

32 node(s) :- ret(_, s).

33

34 .decl forward(x:symbol , y:symbol)

35 forward(s, s):- node(s).

36 forward(s, y) :- forward(s, x), path(x, y).

37 forward(s, y) :- forward(s, x), call(x, y).

38

39 .decl backward(x:symbol , y:symbol)

40 backward(s, s) :- node(s).

41 backward(x, s) :- path(x, y), backward(y,s).

42 backward(x, s) :- ret(x, y), backward(y, s).

43

44 .decl reachesSrcSink(x:symbol , y:symbol)

45 reachesSrcSink(x, z) :- src(x), backward(x, y), forward(y, z)

, sink(z).

46

47 .output reachesSrcSink

Listing 5.6 – CFL reachability analysis

34

5.2. Results

ID Name lines of code number of functions

1 Apache Tika 76843 5723
2 Facebook Buck 300655 25192

10 Spark 6127 838
17 docker-maven-plugin 16531 1981
26 AisLib application framework 12191 1188
29 Apache Abdera 49214 6922
33 Apache Commons Configuration 28021 2887
38 Apache Empire-db 48947 4917
39 Apache Jackrabbit 273574 23796
41 Maven Release 10984 824
43 Apache Tobago 41766 3960
45 Apache Pluto 23607 2436
46 Wicket Parent 137186 12964
79 Stapler Parent 8108 871
80 Maven hpi Plugin 1621 116
85 Restcomm Sip Servlets 43107 4085

103 Pippo Parent 16327 1935
110 Apache Tomcat-7 282648 27095
111 Apache Tomcat-8 328848 30159
112 Apache Tomcat-9 259455 24639

Table 5.1 – Java input programs

5.1.3 Benchmarks

For the experiments, we ran the analyses on a collection of big open-source projects in Java

and PHP. Table 5.1 and Table 5.2 list the names of the input projects and metrics on the lines

of code in the project, the number of functions and the number of Datalog input facts, for

Java and PHP respectively. As the content of the projects is not of relevance in our evaluation,

we omit a description and only refer to the projects by their benchmark IDs in the following

sections.

5.2 Results

The experiments were performed in a machine with four Intel Xeon 2.20GHz CPUs and 26 GB

of memory, running Ubuntu 18.04. In all experiments Soufflé, is used to generate C++ code

parallelized for four cores that was then compiled with GCC 7.4.0. We only report results for

those project where at least 50 outputs are generated at evaluation time in order to have a

sufficiently large set of trees on which to evaluate the performance of proof tree construction.

35

Experimental Evaluation

ID Name lines of code number of functions

0 Jeedom 36605 1631
2 UBUGraph 9021 538
7 CakePHP 63868 5150

11 CodeIgniter 2 28298 1566
12 CodeIgniter 3 28298 1566
13 CodeIgniter 4 30624 2183
14 Composer Dependency Manager for PHP 28009 1927
18 Drupal 239249 21448
26 Grav 33216 3153
30 Joomla CMS 253024 10007
36 Magento 2 532722 41725
37 Matomo 201350 14342
42 osCommerce Online Merchant v2.x 38226 1742
43 osCommerce Online Merchant v3.x 36066 1784
44 Phabricator 453360 35869
47 phpMyFAQ 71551 1138
52 phpMyAdmin 96539 3085
56 PimCore 180891 14287
58 PrestaShop Scalable eCommerce Solution 183226 8788
59 ProjectSend 71001 12329
61 Shopware 268650 20119
67 Typo3 413264 22929

Table 5.2 – PHP input programs

36

5.2. Results

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

1 1.48e-01 1.56e-01 1.55e-01 9.97e-01 28784 28968 31476 1.09e+00
2 1.01e+00 8.55e-01 9.66e-01 1.13e+00 115628 115768 132252 1.14e+00
10 1.99e-02 1.93e-02 2.34e-02 1.21e+00 6164 6452 7340 1.14e+00
17 8.54e-02 8.18e-02 1.01e-01 1.23e+00 12180 12488 15416 1.23e+00
26 1.61e-02 1.36e-02 1.59e-02 1.17e+00 7512 7720 8004 1.04e+00
29 4.44e-01 4.14e-01 6.49e-01 1.57e+00 28696 29036 41448 1.43e+00
33 7.10e-02 6.77e-02 8.61e-02 1.27e+00 13412 13688 15436 1.13e+00
38 1.50e-01 1.27e-01 1.54e-01 1.21e+00 20092 20368 23280 1.14e+00
41 1.64e-02 1.52e-02 1.85e-02 1.21e+00 7856 8132 8712 1.07e+00
43 1.31e-01 1.24e-01 1.63e-01 1.32e+00 17984 18372 21976 1.20e+00
45 6.07e-02 5.80e-02 6.91e-02 1.19e+00 11728 11860 14152 1.19e+00
46 6.51e+00 5.88e+00 8.73e+00 1.49e+00 156888 157084 293356 1.87e+00
79 8.44e-02 8.21e-02 1.05e-01 1.28e+00 9080 9308 12472 1.34e+00
80 3.56e-03 3.41e-03 4.10e-03 1.20e+00 5680 5788 5736 9.91e-01
85 9.35e-02 8.91e-02 1.11e-01 1.25e+00 16036 16240 19132 1.18e+00
103 2.36e-01 2.25e-01 3.48e-01 1.55e+00 15144 15456 23524 1.52e+00

Table 5.3 – Bottom up time and maximum RSS for running graph reachability analysis on
Java benchmarks without provenance (no), with Soufflé’s explain provenance (exp), and with
subtree-heights provenance (sH).

All of the presented times are in seconds, memory is measured in KB. For memory usage the

maximum resident set size (RSS), i.e. the maximum amount of main memory the process

occupies at some point during its lifetime, is reported.

5.2.1 Bottom Up Evaluation using Subtree-heights Provenance

In this section, we evaluate the performance of bottom up evaluation with the additional

instrumentation for subtree-heights provenance in order to gather evidence for Hypotheses 2

and 3.

Table 5.3 and Table 5.4 show a comparison of time and memory usage during bottom up

phase for reachability analysis run on Java and PHP projects respectively. For time as well as

memory the first three columns refer to executions without provenance (no), with Soufflé’s

explain provenance (exp), and with subtree-heights provenance (sH). The fourth column

describes the ratio between measured values for executions with subtree-heights provenance

and executions with Soufflé’s provenance. On average, for Java as well as PHP benchmarks

subtree-heights provenance instrumentation results in a 27% runtime overhead compared to

Soufflé’s provenance. The average memory overhead is 23% for Java projects and 33% for PHP

projects.

37

Experimental Evaluation

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

2 2.08e-01 1.97e-01 2.76e-01 1.40e+00 11512 11708 17680 1.51e+00
7 7.37e-02 7.16e-02 7.79e-02 1.09e+00 15352 15784 17204 1.09e+00
11 1.37e-01 1.42e-01 1.75e-01 1.23e+00 12656 13032 17060 1.31e+00
12 1.34e-01 1.47e-01 1.72e-01 1.18e+00 12876 13212 16992 1.29e+00
13 5.37e-02 5.36e-02 6.78e-02 1.27e+00 9932 10204 11628 1.14e+00
14 5.34e-02 5.49e-02 5.66e-02 1.03e+00 10624 10928 11924 1.09e+00
18 5.03e-01 5.27e-01 6.49e-01 1.23e+00 53168 53476 61480 1.15e+00
26 3.42e-02 3.28e-02 4.03e-02 1.23e+00 10396 10612 11376 1.07e+00
36 8.43e-01 7.80e-01 9.37e-01 1.20e+00 110196 110412 119844 1.09e+00
44 2.74e+00 2.69e+00 3.54e+00 1.32e+00 121388 121852 167140 1.37e+00
47 2.40e+00 2.40e+00 3.42e+00 1.43e+00 66428 67008 126368 1.89e+00
56 1.23e+00 1.29e+00 1.73e+00 1.34e+00 60868 61076 87012 1.42e+00
58 1.32e+00 1.34e+00 1.83e+00 1.37e+00 71040 71296 96864 1.36e+00
59 3.51e+00 3.48e+00 4.92e+00 1.41e+00 93544 93816 181380 1.93e+00
61 4.98e-01 5.13e-01 6.73e-01 1.31e+00 54328 54704 64752 1.18e+00

Table 5.4 – Bottom up time and maximum RSS for running graph reachability analysis on
PHP benchmarks without provenance (no), with Soufflé’s explain provenance (exp), and with
subtree-heights provenance (sH).

The same measurements for CFL reachability are shown in Table 5.5 and Table 5.6. The

runtime overhead for Java projects is on average 40%, for PHP projects 50%. Regarding

memory usage, the average overhead is 40% for Java and 44% for PHP projects. The size of

the memory overhead is determined by the ratio between the number of original columns

and the number of additional height parameters. As explained in Section 4.4, the number of

height parameters is determined by the maximal number of premises of all rules of a relation.

For CFL reachability, this ratio is higher than for graph reachability which might explain the

higher memory overhead. The runtime overhead is mostly caused by the additional updates

of the provenance columns. In subtree-heights provenance, if a tuple’s height is updated, also

the sub-heights of all the tuples that where generated from this tuple potentially need to be

updated. The more sub-height parameters a tuple has, the more likely it is that one of the

heights needs to be updated which could explain the difference in overheads between graph

and CFL reachability.

Hypothesis 2 claims that the runtime overhead on bottom up time is not prohibitive. While

the runtime overhead might seem substantial in relative terms, for graph reachability the

absolute times for bottom up evaluation are in a range of maximum a few seconds even for

big benchmarks. Therefore, the overhead is a fraction of a second in most cases which seems

very supportable for this analysis.

38

5.2. Results

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

26 1.25e+00 1.26e+00 1.80e+00 1.43e+00 19084 19260 25468 1.32e+00
39 9.10e+01 9.23e+01 1.29e+02 1.40e+00 623080 623300 885236 1.42e+00
103 2.66e+00 2.66e+00 3.66e+00 1.38e+00 32092 32416 43992 1.36e+00
110 1.20e+02 1.21e+02 1.70e+02 1.41e+00 655000 655232 936780 1.43e+00
111 1.54e+02 1.56e+02 2.16e+02 1.38e+00 698204 698484 998104 1.43e+00
112 1.33e+02 1.36e+02 1.90e+02 1.40e+00 592120 592412 845564 1.43e+00

Table 5.5 – Bottom up time and maximum RSS for running CFL reachability analysis on Java
benchmarks without provenance (no), with Soufflé’s explain provenance (exp), and with
subtree-heights provenance (sH).

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

0 5.34e+02 5.39e+02 7.68e+02 1.42e+00 749968 750296 1094388 1.46e+00
2 4.06e+01 4.18e+01 6.90e+01 1.65e+00 46944 47228 68744 1.46e+00
7 6.68e+00 6.83e+00 1.00e+01 1.47e+00 69884 69968 98008 1.40e+00
11 4.55e+00 4.56e+00 6.89e+00 1.51e+00 41460 41648 58060 1.39e+00
12 4.46e+00 4.54e+00 6.89e+00 1.52e+00 41404 41880 58272 1.39e+00
18 6.61e+01 6.68e+01 9.77e+01 1.46e+00 334868 335112 477924 1.43e+00
30 2.02e+02 2.05e+02 3.17e+02 1.55e+00 651876 652108 939952 1.44e+00
37 2.80e+01 2.85e+01 3.99e+01 1.40e+00 214536 214864 305856 1.42e+00
42 3.25e+02 3.28e+02 4.58e+02 1.40e+00 693040 693404 1012204 1.46e+00
43 1.92e+02 1.95e+02 3.02e+02 1.55e+00 397252 397600 580476 1.46e+00
47 6.91e+01 7.06e+01 1.02e+02 1.45e+00 129344 129564 187316 1.45e+00
52 2.93e+02 2.98e+02 4.47e+02 1.50e+00 419944 420308 618412 1.47e+00
56 8.07e+01 8.17e+01 1.24e+02 1.51e+00 284976 285176 416264 1.46e+00
58 4.26e+02 4.32e+02 6.82e+02 1.58e+00 533864 534308 773988 1.45e+00
59 4.71e+01 4.80e+01 6.89e+01 1.43e+00 115568 115772 169932 1.47e+00
67 2.53e+02 2.58e+02 4.00e+02 1.55e+00 839768 839888 1221684 1.45e+00

Table 5.6 – Bottom up time and maximum RSS for running CFL reachability analysis on PHP
benchmarks without provenance (no), with Soufflé’s explain provenance (exp), and with
subtree-heights provenance (sH).

39

Experimental Evaluation

For CFL reachability, the absolute runtime overhead is in the range of up to some minutes. See

for example PHP benchmark 58 where the overall runtime for bottom up evaluation increases

from roughly 7 to roughly 11 minutes. While the overhead might be noticeable, it can be

concluded that for the considered analyses it is not prohibitive.

Similarly, for Hypothesis 3 concerning memory overhead during bottom up time, we conclude

that it is significant but not dramatic. The absolute differences in memory usage range from a

few MB to at most a few hundred MB.

5.2.2 Proof Tree Construction using Subtree-heigths Provenance

This section presents performance characteristics of proof tree construction using subtree-

heights provenance. In the evaluation, we measured the performance for constructing proof

trees of all outputs of the analysis. While the provenance component of Soufflé mostly targets

interactive queries that compute one proof tree at a time, we compute all of them in order

to capture the overall performance. Furthermore, computing all proof trees is indeed an

operation that might be needed for certain applications which rank analysis alarms based on

user feedback [24] described in Chapter 2.

For the graph reachability analysis, Table 5.7 and Table 5.8 provide for every benchmark the

number of output tuples, i.e. the number of computed trees, the average number of nodes

per tree and the total number of nodes in the tree. The number of outputs varies strongly

amongst the benchmarks. The numbers range from a few dozens to ten thousands of trees.

For the Java benchmarks, the average number of nodes per tree is 90, for PHP benchmarks 63.

The number of nodes is equal for Soufflé’s provenance and subtree-heights provenance. As

minimal height proof trees are not unique, this is not necessarily the case if more complex

analyses are taken into account. For this simple analysis, it makes sense however, as all proof

trees with the same height also have the same shape because every internal level of the proof

tree except the first and the last one has exactly three nodes, corresponding to the three body

tuples in the recursive rule for constructing a path.

The descriptions of the trees for CFL reachability are displayed in Table 5.9 and Table 5.10. As

expected, the higher precision of CFL reachability leads to a considerably lower number of

alarms, i.e. outputs. For the majority of Java benchmarks that are considered for graph reacha-

bility, CFL reachability does not yield any outputs at all. As mentioned above, benchmarks

with less than 50 outputs are not considered in the discussion. For Java the maximal number

of outputs is a 385. For PHP there are still benchmarks with thousands of outputs. The average

number of node per tree is 41 for Java and 55 for PHP projects.

For reachability, Table 5.11 and Table 5.12 provide evidence for Hypothesis 1 that claims that

subtree-heights provenance greatly reduce the number of index accesses during proof tree

construction and therefore significantly reduce the runtime.

40

5.2. Results

exp sH
trees # nodes avg # nodes # nodes avg # nodes

1 1.79e+02 1.56e+04 8.69e+01 1.56e+04 8.69e+01
2 1.37e+03 1.18e+05 8.61e+01 1.18e+05 8.61e+01
10 1.62e+02 1.80e+04 1.11e+02 1.80e+04 1.11e+02
17 5.46e+02 7.00e+04 1.28e+02 7.00e+04 1.28e+02
26 6.20e+01 2.65e+03 4.28e+01 2.65e+03 4.28e+01
29 1.32e+03 1.49e+05 1.13e+02 1.49e+05 1.13e+02
33 8.40e+01 5.73e+03 6.82e+01 5.73e+03 6.82e+01
38 8.70e+01 5.64e+03 6.49e+01 5.64e+03 6.49e+01
41 7.40e+01 8.25e+03 1.12e+02 8.25e+03 1.12e+02
43 1.05e+02 1.15e+04 1.10e+02 1.15e+04 1.10e+02
45 6.80e+01 7.61e+03 1.12e+02 7.61e+03 1.12e+02
46 1.08e+04 6.94e+05 6.43e+01 6.94e+05 6.43e+01
79 2.50e+02 2.29e+04 9.16e+01 2.29e+04 9.16e+01
80 5.20e+01 6.00e+03 1.15e+02 6.00e+03 1.15e+02
85 5.60e+01 4.63e+03 8.26e+01 4.63e+03 8.26e+01
103 1.68e+03 7.59e+04 4.51e+01 7.59e+04 4.51e+01

Table 5.7 – Number of trees and average number of nodes per tree for running graph reacha-
bility analysis on Java benchmarks with Soufflé’s explain provenance (exp) and with subtree-
heights provenance (sH).

exp sH
trees # nodes avg # nodes # nodes avg # nodes

2 6.72e+02 5.35e+04 7.96e+01 5.35e+04 7.96e+01
7 4.92e+02 3.12e+04 6.35e+01 3.12e+04 6.35e+01
11 2.62e+03 1.38e+05 5.28e+01 1.38e+05 5.28e+01
12 2.62e+03 1.38e+05 5.28e+01 1.38e+05 5.28e+01
13 9.67e+02 7.17e+04 7.41e+01 7.17e+04 7.41e+01
14 1.16e+03 1.17e+05 1.01e+02 1.17e+05 1.01e+02
18 2.71e+03 1.35e+05 4.98e+01 1.35e+05 4.98e+01
26 2.23e+02 8.48e+03 3.80e+01 8.48e+03 3.80e+01
36 7.10e+01 2.99e+03 4.21e+01 2.99e+03 4.21e+01
44 3.81e+03 2.80e+05 7.36e+01 2.80e+05 7.36e+01
47 8.83e+03 5.93e+05 6.72e+01 5.93e+05 6.72e+01
56 1.25e+04 7.54e+05 6.01e+01 7.54e+05 6.01e+01
58 1.57e+04 1.42e+06 9.05e+01 1.42e+06 9.05e+01
59 6.99e+04 3.35e+06 4.80e+01 3.35e+06 4.80e+01
61 1.20e+03 7.08e+04 5.90e+01 7.08e+04 5.90e+01

Table 5.8 – Number of trees and average number of nodes per tree for running graph reacha-
bility analysis on PHP benchmarks with Soufflé’s explain provenance (exp) and with subtree-
heights provenance (sH).

41

Experimental Evaluation

exp sH
trees # nodes avg # nodes # nodes avg # nodes

26 6.00e+01 1.51e+03 2.52e+01 1.50e+03 2.50e+01
39 6.20e+01 1.34e+03 2.15e+01 1.31e+03 2.12e+01
103 1.48e+02 1.20e+04 8.12e+01 1.17e+04 7.88e+01
110 3.85e+02 1.74e+04 4.52e+01 1.65e+04 4.28e+01
111 2.71e+02 9.96e+03 3.67e+01 9.70e+03 3.58e+01
112 3.03e+02 1.10e+04 3.62e+01 1.06e+04 3.50e+01

Table 5.9 – Number of trees and average number of nodes per tree for running CFL reachability
analysis on Java benchmarks with Soufflé’s explain provenance (exp) and with subtree-heights
provenance (sH).

exp sH
trees # nodes avg # nodes # nodes avg # nodes

0 2.14e+03 1.55e+05 7.25e+01 1.45e+05 6.81e+01
2 5.50e+01 3.34e+03 6.08e+01 2.76e+03 5.01e+01
7 5.80e+01 1.62e+03 2.80e+01 1.57e+03 2.70e+01
11 7.20e+01 1.38e+03 1.91e+01 1.37e+03 1.90e+01
12 7.20e+01 1.38e+03 1.91e+01 1.37e+03 1.90e+01
18 2.92e+02 2.06e+04 7.07e+01 2.04e+04 6.99e+01
30 2.83e+02 1.08e+04 3.83e+01 1.06e+04 3.76e+01
37 5.61e+02 3.25e+04 5.80e+01 3.16e+04 5.64e+01
42 3.22e+04 4.32e+06 1.34e+02 4.07e+06 1.26e+02
43 2.28e+04 1.63e+06 7.16e+01 1.55e+06 6.82e+01
47 1.86e+02 3.97e+03 2.14e+01 3.86e+03 2.07e+01
52 4.40e+03 3.40e+05 7.72e+01 3.21e+05 7.31e+01
56 1.33e+02 4.38e+03 3.29e+01 4.18e+03 3.14e+01
58 3.63e+03 3.09e+05 8.52e+01 3.03e+05 8.35e+01
59 2.21e+03 1.29e+05 5.82e+01 1.24e+05 5.61e+01
67 1.41e+03 4.99e+04 3.55e+01 4.86e+04 3.45e+01

Table 5.10 – Number of trees and average number of nodes per tree for running CFL reachability
analysis on PHP benchmarks with Soufflé’s explain provenance (exp) and with subtree-heights
provenance (sH).

42

5.2. Results

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

1 1.15e+01 1.27e+00 1.11e-01 7.36e+07 4.03e+06 5.48e-02
2 3.48e+02 3.74e+01 1.08e-01 1.82e+09 9.47e+07 5.21e-02
10 5.57e-01 1.29e-01 2.32e-01 3.63e+06 1.52e+05 4.18e-02
17 7.32e+00 1.20e+00 1.64e-01 4.65e+07 3.05e+06 6.55e-02
26 1.61e-02 1.45e-02 8.98e-01 3.47e+04 5.17e+03 1.49e-01
29 5.23e+01 6.37e+00 1.22e-01 3.20e+08 1.87e+07 5.85e-02
33 1.41e+00 2.23e-01 1.58e-01 9.91e+06 7.37e+05 7.43e-02
38 3.20e+00 4.97e-01 1.55e-01 2.27e+07 1.55e+06 6.82e-02
41 3.74e-01 7.31e-02 1.95e-01 2.35e+06 1.12e+05 4.75e-02
43 3.20e+00 3.76e-01 1.17e-01 2.46e+07 1.07e+06 4.35e-02
45 2.26e-01 6.13e-02 2.71e-01 1.37e+06 6.70e+04 4.90e-02
46 6.65e+02 1.18e+02 1.78e-01 3.67e+09 3.30e+08 8.99e-02
79 1.07e+00 2.26e-01 2.11e-01 6.58e+06 4.01e+05 6.09e-02
80 1.63e-01 4.16e-02 2.55e-01 1.32e+06 5.41e+04 4.10e-02
85 1.59e+00 1.93e-01 1.21e-01 1.21e+07 6.27e+05 5.18e-02
103 9.75e+00 1.97e+00 2.02e-01 6.44e+07 6.36e+06 9.87e-02

Table 5.11 – Time for constructing proof trees and number of index accesses for all outputs for
running graph reachability analysis on Java benchmarks with Soufflé’s explain provenance
(exp) and with subtree-heights provenance (sH).

For Java as well as PHP benchmarks the reduction in index accesses is more than 90% and the

reduction in runtime is almost 80%. Given that the proof tree construction is a big proportion

of the overall runtime, this has a great impact in practice. While in bottom up evaluation we

observe runtimes up to a few seconds at most, proof tree construction can take up to a few

minutes for some of the considered benchmarks.

For CFL reachability the results are shown in Table 5.13 and Table 5.14. For this analysis, the

number of index accesses is reduced by more than 50% for Java as well as PHP projects. The

runtime improvement is 6% for Java projects and 15% for PHP projects. It seems that the

effect of the reduction of index lookups on the runtime is less clear for this analysis. Further

investigations are needed to understand why this is the case.

For Hypothesis 1, we conclude that there is a significant reduction of index accesses for both

considered analyses. While this yields a dramatic speed up for graph reachability, the runtime

of proof tree construction for CFL reachability is only slightly reduced.

Finally, we investigated some potential overheads that might be introduced by the way subtree-

heights provenance is currently implemented. As explained in Section 4.4, after the Datalog

evaluation finishes, specific indexes are added for the search of body tuples during proof tree

construction. This results in an overhead in runtime as well as memory consumption.

43

Experimental Evaluation

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

2 2.04e+00 4.65e-01 2.28e-01 1.45e+07 8.26e+05 5.70e-02
7 3.21e+00 6.62e-01 2.06e-01 1.74e+07 1.89e+06 1.08e-01
11 8.38e+00 1.91e+00 2.28e-01 5.15e+07 4.86e+06 9.45e-02
12 8.52e+00 1.93e+00 2.26e-01 5.15e+07 4.86e+06 9.45e-02
13 3.08e+00 7.10e-01 2.31e-01 1.77e+07 1.32e+06 7.46e-02
14 1.05e+01 1.64e+00 1.55e-01 7.09e+07 3.88e+06 5.47e-02
18 1.08e+02 2.19e+01 2.03e-01 4.86e+08 5.59e+07 1.15e-01
26 1.00e+00 2.26e-01 2.26e-01 6.85e+06 7.05e+05 1.03e-01
36 2.57e+00 5.00e-01 1.95e-01 1.40e+07 1.32e+06 9.44e-02
44 4.60e+02 5.72e+01 1.24e-01 1.97e+09 1.21e+08 6.17e-02
47 1.16e+02 2.04e+01 1.76e-01 8.62e+08 7.05e+07 8.18e-02
56 3.55e+02 7.70e+01 2.17e-01 1.65e+09 2.00e+08 1.21e-01
58 1.05e+02 1.77e+01 1.68e-01 6.39e+08 3.55e+07 5.56e-02
59 2.37e+02 5.30e+01 2.23e-01 1.55e+09 1.62e+08 1.04e-01
61 2.82e+01 5.72e+00 2.03e-01 1.89e+08 1.70e+07 8.99e-02

Table 5.12 – Time for constructing proof trees and number of index accesses for all outputs for
running graph reachability analysis on PHP benchmarks with Soufflé’s explain provenance
(exp) and with subtree-heights provenance (sH).

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

26 2.12e-02 2.09e-02 9.86e-01 8.13e+03 5.50e+03 6.77e-01
39 2.21e-02 2.05e-02 9.29e-01 8.10e+03 5.53e+03 6.82e-01
103 1.50e-01 1.45e-01 9.63e-01 6.62e+04 3.83e+04 5.78e-01
110 2.67e-01 2.40e-01 8.98e-01 1.49e+05 8.11e+04 5.45e-01
111 1.66e-01 1.53e-01 9.19e-01 9.74e+04 5.33e+04 5.47e-01
112 1.91e-01 1.77e-01 9.27e-01 1.18e+05 5.99e+04 5.09e-01

Table 5.13 – Time for constructing proof trees and number of index accesses for all outputs for
running CFL reachability analysis on Java benchmarks with Soufflé’s explain provenance (exp)
and with subtree-heights provenance (sH).

44

5.2. Results

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

0 4.33e+00 2.85e+00 6.59e-01 3.02e+06 1.29e+06 4.29e-01
2 5.18e-02 3.89e-02 7.51e-01 2.49e+04 9.82e+03 3.95e-01
7 2.97e-02 2.67e-02 8.96e-01 2.18e+04 1.04e+04 4.77e-01
11 2.09e-02 2.02e-02 9.65e-01 7.81e+03 5.53e+03 7.08e-01
12 2.06e-02 2.04e-02 9.91e-01 7.81e+03 5.53e+03 7.08e-01
18 3.22e-01 2.99e-01 9.28e-01 1.99e+05 8.84e+04 4.45e-01
30 1.81e-01 1.73e-01 9.56e-01 9.84e+04 5.90e+04 6.00e-01
37 7.38e-01 5.25e-01 7.11e-01 6.84e+05 2.39e+05 3.50e-01
42 6.52e+01 5.53e+01 8.49e-01 3.36e+07 1.74e+07 5.18e-01
43 2.30e+01 2.13e+01 9.26e-01 9.93e+06 6.03e+06 6.07e-01
47 5.92e-02 5.65e-02 9.55e-01 2.19e+04 1.42e+04 6.48e-01
52 8.01e+00 6.08e+00 7.60e-01 5.94e+06 2.91e+06 4.90e-01
56 6.37e-02 5.90e-02 9.26e-01 3.36e+04 1.70e+04 5.05e-01
58 5.86e+00 4.94e+00 8.44e-01 2.94e+06 1.47e+06 5.02e-01
59 1.75e+00 1.59e+00 9.07e-01 7.44e+05 4.57e+05 6.14e-01
67 2.55e+00 1.55e+00 6.10e-01 2.49e+06 9.53e+05 3.83e-01

Table 5.14 – Time for constructing proof trees and number of index accesses for all outputs
for running CFL reachability analysis on PHP benchmarks with Soufflé’s explain provenance
(exp) and with subtree-heights provenance (sH).

Table 5.15 and Table 5.16 describe the time that is needed to populate the new indexes. The

average time is 0.1 seconds, where benchmarks with longer times are also benchmarks that

have comparably long runtime in the other phases. For all benchmarks, the index population

time is negligibly small in comparison to the overall runtime.

The index population times for CFL reachability are shown in Table 5.17 and Table 5.18. The

average time is 2 seconds, which also is negligible in comparison to the overall runtime.

Table 5.19 and Table 5.20 provide information on the overall memory overhead. Note that

the memory usage for Soufflé’s provenance is equivalent to what is reported in Table 5.3

and Table 5.4 as Soufflé’s provenance does not require additional memory at this point. On

average, the overall memory overhead is 51% for Java and 79% for PHP benchmarks. This

includes the memory overhead that is due to the additional indexes as well as the memory

overhead that is introduced at evaluation time due to the more complex instrumentation

mentioned in the previous section.

The memory overhead for CFL reachability is shown in Table 5.21 and Table 5.22. On average,

the overall memory overhead is 121% for Java and 187% for PHP benchmarks.

45

Experimental Evaluation

1 2.06e-02
2 1.39e-01
10 4.84e-03
17 2.24e-02
26 1.96e-03
29 9.87e-02
33 1.43e-02
38 2.34e-02
41 2.74e-03
43 2.82e-02
45 1.37e-02
46 1.10e+00
79 2.71e-02
80 5.82e-04
85 2.07e-02
103 6.34e-02

Table 5.15 – Time (s) for populating prove-
nance indexes for running graph reacha-
bility analysis on Java benchmarks.

2 5.97e-02
7 1.03e-02
11 3.63e-02
12 3.58e-02
13 1.16e-02
14 1.03e-02
18 7.46e-02
26 4.72e-03
36 9.72e-02
44 4.50e-01
47 5.40e-01
56 2.31e-01
58 2.49e-01
59 7.86e-01
61 9.08e-02

Table 5.16 – Time (s) for populating prove-
nance indexes for running graph reacha-
bility analysis on PHP benchmarks.

26 7.09e-02
39 4.23e+00
103 1.72e-01
110 4.65e+00
111 4.90e+00
112 3.90e+00

Table 5.17 – Time (s) for populating prove-
nance indexes for running CFL reachabil-
ity analysis on Java benchmarks.

0 4.42e+00
2 2.22e-01
7 3.54e-01
11 1.87e-01
12 1.91e-01
18 1.90e+00
30 3.63e+00
37 1.25e+00
42 3.43e+00
43 2.05e+00
47 6.69e-01
52 2.63e+00
56 1.65e+00
58 2.97e+00
59 5.83e-01
67 4.58e+00

Table 5.18 – Time (s) for populating prove-
nance indexes for running CFL reachabil-
ity analysis on PHP benchmarks.

46

5.2. Results

Maximum RSS (KB)
exp sH sH/exp

1 28968 35232 1.22e+00
2 115768 152172 1.31e+00
10 6452 8252 1.28e+00
17 12488 18704 1.50e+00
26 7720 8388 1.09e+00
29 29036 55236 1.90e+00
33 13688 17992 1.31e+00
38 20368 27472 1.35e+00
41 8132 9416 1.16e+00
43 18372 26696 1.45e+00
45 11860 16708 1.41e+00
46 157084 443544 2.82e+00
79 9308 16664 1.79e+00
80 5788 5736 9.91e-01
85 16240 22420 1.38e+00
103 15456 32936 2.13e+00

Table 5.19 – Maximum resident set size
for running graph reachability analysis
on Java benchmarks with Soufflé’s ex-
plain provenance (exp) and with subtree-
heights provenance (sH).

Maximum RSS (KB)
exp sH sH/exp

2 11708 27364 2.34e+00
7 15784 18968 1.20e+00
11 13032 23372 1.79e+00
12 13212 23300 1.76e+00
13 10204 13796 1.35e+00
14 10928 13948 1.28e+00
18 53476 73540 1.38e+00
26 10612 12288 1.16e+00
36 110412 136596 1.24e+00
44 121852 228100 1.87e+00
47 67008 200144 2.99e+00
56 61076 119664 1.96e+00
58 71296 135644 1.90e+00
59 93816 295224 3.15e+00
61 54704 79716 1.46e+00

Table 5.20 – Maximum resident set size
for running reachability analysis on PHP
benchmarks with Soufflé’s explain prove-
nance (exp) and with subtree-heights
provenance (sH).

47

Experimental Evaluation

Maximum RSS (KB)
exp sH sH/exp

26 19260 34888 1.81e+00
39 623300 1431512 2.30e+00
103 32416 70632 2.18e+00
110 655232 1560324 2.38e+00
111 698484 1643440 2.35e+00
112 592412 1322468 2.23e+00

Table 5.21 – Maximum resident set size for
running CFL reachability analysis on Java
benchmarks with Soufflé’s explain prove-
nance (exp) and with subtree-heights
provenance (sH).

Maximum RSS (KB)
exp sH sH/exp

0 750296 1353816 1.80e+00
2 47228 84236 1.78e+00
7 69968 140956 2.01e+00
11 41648 77044 1.85e+00
12 41880 77196 1.84e+00
18 335112 664020 1.98e+00
30 652108 1204516 1.85e+00
37 214864 455196 2.12e+00
42 693404 1151452 1.66e+00
43 397600 685404 1.72e+00
47 129564 236276 1.82e+00
52 420308 867924 2.06e+00
56 285176 564812 1.98e+00
58 534308 972492 1.82e+00
59 115772 210296 1.82e+00
67 839888 1537344 1.83e+00

Table 5.22 – Maximum resident set size for
running CFL reachability analysis on PHP
benchmarks with Soufflé’s explain prove-
nance (exp) and with subtree-heights
provenance (sH).

With respect to Hypothesis 3, it has to be noted that the memory overhead is significant.

However, as can be seen in a comparison to the memory overheads during bottom up time, a

big part of the overhead is due to the additional indexes. As outlined in Section 4.4, different

implementation strategies might help to avoid the need to create separate indexes.

5.2.3 Magic Set Transformation

This section discusses how using Soufflé’s magic set transformation influences the perfor-

mance characteristics of subtree-heights provenance. Hypothesis 4 states that all other hy-

potheses also hold in presence of this transformation.

As explained in Section 3.1.1, Soufflé’s magic set transformation modifies the rules before any

other parts of the evaluation are done. In particular, magic set transformation is performed

before the transformation step that adds the additional provenance attributes to the rules.

Furthermore, it is important to note that proof trees are generated using the rules that are

the result of magic set transformation. Therefore, from the perspective of the provenance

component applying a magic set transformation means computing provenance on a different

Datalog program. From a user’s perspective, who wants to compute proof trees for debugging

48

5.2. Results

purposes, this fact might be problematic, as debugging the generated rules requires under-

standing how they relate to the original rules. Investigating the interactions between magic

set transformations or other rule rewriting transformations with proof tree computations is an

interesting direction which we leave as future work.

To understand the difference that magic set transformation makes for the performance of

provenance computation, we reran the same experiments presented in the previous section

for graph reachability and CFL reachability after applying magic set transformation to them.

In order to get a better understanding of the results for graph reachability, the modified rules

are shown in Listing 5.7. It can be observed that new intermediary relations are generated,

which are used in the body of rules of the original relations. In essence, while the tuples are

filtered and less tuples are generated in every step of the evaluation, generating a single tuple

might take more steps, which in the end results in proof trees with more nodes. The interested

reader can find the modified rules for CFL reachability in Appendix A.2.1.

The detailed results for graph reachability can be found in Table A.3 to Table A.12 in the

Appendix. The difference in performance between Soufflé’s provenance and subtree-heights

provenance is similar to the version without magic set transformation. The average memory

overhead during bottom up computation is 25% for Java projects and 36% for PHP projects for

subtree-heights compared to Soufflé’s provenance. The average runtime overhead for bottom

evaluation is 23%. The memory overhead during proof construction time is 52% for Java and

81% for PHP. The runtime for generating proof trees for all outputs is reduced by 73% Java and

77% for PHP projects. The number of index accesses is reduced by more than 90% in both

cases.

For CFL reachabilty, the analysis with magic set transformation yields trees with significantly

more levels and nodes than the unmodified analysis. As a consequence, for all considered

benchmarks proof tree construction did not complete within the time limit of 15 minutes.

In order to get an estimate of the performance, we therefore reran the experiments with a

restriction on the height of the generated proof trees. Instead of generating full proof trees, we

only computed the first 20 levels for every tree.

The detailed results that were obtained with this additional restriction can be found in Ta-

ble A.13 to Table A.22 in the Appendix. The average memory overhead during bottom up

computation is 26% for Java projects and 30% for PHP projects for subtree-heights compared

to Soufflé’s provenance. The average runtime overhead for bottom evaluation is 47% for Java

projects and 36% for PHP projects. The memory overhead during proof construction time is

73% for Java and 86% for PHP. The runtime for generating proof trees for all outputs is reduced

by 74% Java and 75% for PHP projects. The number of index accesses is reduced by more

than 90% in both cases. Overall, those results differ considerably from the version without

magic sets. In particular, the relative speed up for proof tree construction with subtree-heigths

provenance is considerably bigger and the overheads are considerably smaller.

49

Experimental Evaluation

1 .decl +m0_path+_bf(x:symbol)

2 +m0_path+_bf(x) :-

3 +m0_reachesSrcSink+_ff(),

4 src(x).

5

6 +m0_path+_bf(x) :-

7 +m0_path+_bf(x),

8 src(x).

9

10 .decl +m0_reachesSrcSink+_ff()

11 +m0_reachesSrcSink+_ff().

12

13 .decl edge(x:symbol ,y:symbol)

14 .output edge

15

16 .decl path+_bf(x:symbol ,y:symbol)

17 path+_bf(x,y) :-

18 +m0_path+_bf(x),

19 edge(x,y).

20

21 path+_bf(x,y) :-

22 +m0_path+_bf(x),

23 src(x),

24 path+_bf(x,z),

25 edge(z,y).

26

27 .decl reachesSrcSink(x:symbol ,y:symbol)

28 reachesSrcSink(arg0 ,arg1) :-

29 reachesSrcSink+_ff(arg0 ,arg1).

30

31 .output reachesSrcSink

32

33 .decl reachesSrcSink+_ff(x:symbol ,y:symbol)

34 reachesSrcSink+_ff(x,y) :-

35 +m0_reachesSrcSink+_ff(),

36 src(x),

37 path+_bf(x,y),

38 sink(y).

39

40 .decl sink(x:symbol)

41 .output sink

42

43 .decl src(x:symbol)

44 .output src

Listing 5.7 – Datalog rules for graph reachability after performing magic set transformation

50

5.2. Results

The fact that for both analyses the observed speed ups were similar or bigger and the observed

overheads were similar or smaller than in the versions without magic set transformation,

provides evidence that indeed Hypothesis 1, 2, and 3 also hold in the presence of magic set

transformations.

5.2.4 Summary

To sum up we draw the following conclusions for the considered hypotheses:

Hypothesis 1

Subtree-heights provenance reduces the number of index lookups at proof tree construction time

and, hence, reduces the runtime of this phase.

For both analyses, the new provenance computation yielded a significant reduction in the

number of index lookups. In particular, the average observed reduction was more than 90%

for graph reachability and more than 50% for CFL reachability. For graph reachability, this

resulted in an average observed speed-up of 80%. For CFL reachability, the average observed

speed-ups were 6% for Java and 15% for PHP projects.

Hypothesis 2

Subtree-heights provenance runtime overhead on the bottom up time is not prohibitive.

The overhead in evaluation time was between 20% and 50% depending on the considered

setup. While the overhead might be noticeable, it can be concluded that for the considered

analyses it is not prohibitive.

Hypothesis 3

Subtree-heights provenance does not incur in dramatic memory overhead, neither during

evaluation nor proof construction.

The memory overhead ranged from 50% to 180%. While this memory overhead is considerable,

a big part of the overhead is due to the additional indexes used for proof tree construction. As

outlined in Section 4.4, different implementation strategies might help to avoid the need to

create separate indexes.

51

Experimental Evaluation

Hypothesis 4

The above hypotheses also hold with Soufflé’s magic set transformation.

The experimental results showed that for both analyses the observed speed ups were similar

or bigger and the observed overheads where similar or smaller in the versions with magic set

transformation. This provides evidence that indeed Hypothesis 1, 2, and 3 also hold in the

presence of magic set transformations.

52

6 Conclusion

We presented an alternative provenance evaluation strategy for the Soufflé Datalog engine

that stores the height of the body tuples used in a tuple’s generation in addition to Soufflé’s

rule and height annotations at evaluation time. Furthermore, we introduced a novel proof

tree construction algorithm that uses the additional annotations to restrict the search space of

potential body tuples and, hence, reduces the runtime of proof tree construction.

We formalized the new evaluation strategy by defining a new proof tree metric and showed its

correctness. Moreover, we explained the modifications of the Soufflé engine that were needed

for implementing the new provenance mechanism.

In the previous chapter, we presented the results of empirical experiments for two different

Datalog program analyses run on mature real world Java and PHP projects. For both analyses,

the new provenance computation yielded a significant speed-up in the proof tree computation

time. In particular, for graph reachability the average observed speed-up was 80% and for CFL

reachability the average observed speed-ups were 6% for Java and 15% for PHP projects. The

overhead in evaluation time was between 20% and 50% depending on the considered setup.

The memory overhead ranged from 50% to 180%. We showed that using Soufflé’s magic set

transformation results does not significantly change those results.

6.1 Future Work

There are several aspects of this project that can be extended in future work:

• A big portion of the memory overhead of the subtree-heights evaluation strategy is

due to the additional indexes that are added especially for proof tree construction. As

outlined in Section 4.4, one could explore different proof tree construction algorithms

that do not rely on index lookups by the height of a tuple but on an additional filter

operations after the index lookup.

53

Conclusion

• In the current implementation, tuples are annotated with the heights of the generating

body tuples as well as the height of the tuple itself. As the overall height can be easily

computed from the other height parameters, the memory overhead could be reduced

by omitting to store the overall height. However, some modifications of the provenance

index data structures will be needed in order to enable lookups by the overall height

when it is not stored explicitly.

• At the moment, many parts of Soufflé’s source code hard-code the used proof tree metric.

A modification in the architecture could help to ease the experimentation with different

proof tree metrics.

• Extending the experimental evaluation to different program analyses, for example

analyses from the Doop [2] framework, might yield more insights on what characteristics

of an analysis influence the effectiveness of using subtree-heights provenance.

54

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of Databases:

The Logical Level. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st

edition, 1995.

[2] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. Porting Doop to

Soufflé: A Tale of Inter-engine Portability for Datalog-based Analyses. In Proceedings of

the 6th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis,

SOAP 2017, pages 25–30, New York, NY, USA, 2017. ACM.

[3] Tarun Arora, Raghu Ramakrishnan, William G. Roth, Praveen Seshadri, and Divesh

Srivastava. Explaining program execution in deductive systems. In Stefano Ceri, Katsumi

Tanaka, and Shalom Tsur, editors, Deductive and Object-Oriented Databases, pages 101–

119, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[4] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: Object-

oriented Queries on Relational Data. In 30th European Conference on Object-Oriented

Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, pages 2:1–2:25, 2016.

[5] I. Balbin, G.S. Port, K. Ramamohanarao, and K. Meenakshi. Efficient bottom-up compu-

tation of queries on stratified databases. The Journal of Logic Programming, 11(3):295 –

344, 1991.

[6] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. The Journal of Logic

Programming, 10(3):255 – 299, 1991. Special Issue: Database Logic Progamming.

[7] Omar Benjelloun, Anish Das Sarma, Chris Hayworth, and Jennifer Widom. An introduc-

tion to ULDBs and the Trio system. IEEE Data Eng. Bull., 29, 01 2006.

[8] Martin Bravenboer and Yannis Smaragdakis. Strictly Declarative Specification of Sophis-

ticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN Conference on Object

Oriented Programming Systems Languages and Applications, OOPSLA ’09, pages 243–262,

New York, NY, USA, 2009. ACM.

[9] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent Gramoli,

Ralph Holz, and Bernhard Scholz. Vandal: A Scalable Security Analysis Framework for

Smart Contracts. CoRR, abs/1809.03981, 2018.

55

Bibliography

[10] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and where: A characteri-

zation of data provenance. In Jan Van den Bussche and Victor Vianu, editors, Database

Theory — ICDT 2001, pages 316–330, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[11] Rafael Caballero, Yolanda García-Ruiz, and Fernando Sáenz-Pérez. Debugging of Wrong

and Missing Answers for Datalog Programs with Constraint Handling Rules. In Pro-

ceedings of the 17th International Symposium on Principles and Practice of Declarative

Programming, PPDP ’15, pages 55–66, New York, NY, USA, 2015. ACM.

[12] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog (and

never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166,

March 1989.

[13] James Cheney, Laura Chiticariu, and Wang-chiew Tan. Provenance in Databases: Why,

How, and Where. Foundations and Trends in Databases, 1:379–474, 01 2009.

[14] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. Selective Provenance for Datalog

Programs Using Top-k Queries. Proc. VLDB Endow., 8(12):1394–1405, August 2015.

[15] Yoshihiko Futamura. Partial evaluation of computation process–an approach to a

compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381–391, Dec 1999.

[16] B. Glavic and G. Alonso. Perm: Processing Provenance and Data on the Same Data

Model through Query Rewriting. In 2009 IEEE 25th International Conference on Data

Engineering, pages 174–185, March 2009.

[17] Sergio Greco and Cristian Molinaro. Datalog and Logic Databases. Synthesis Lectures on

Data Management, 10:1–169, 10 2015.

[18] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On Synthesis of Program

Analyzers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,

pages 422–430, Cham, 2016. Springer International Publishing.

[19] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. A specialized B-tree

for concurrent datalog evaluation. In Proceedings of the 24th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2019, Washington, DC, USA,

February 16-20, 2019, pages 327–339, 2019.

[20] Sven Köhler, Bertram Ludäscher, and Yannis Smaragdakis. Declarative datalog debugging

for mere mortals. In Pablo Barceló and Reinhard Pichler, editors, Datalog in Academia

and Industry, pages 111–122, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[21] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis and Transformation. In CGO, pages 75–88, San Jose, CA, USA, Mar 2004.

[22] Seokki Lee, Sven Köhler, Bertram Ludäscher, and Boris Glavic. Efficiently Computing

Provenance Graphs for Queries with Negation. CoRR, abs/1701.05699, 2017.

56

Bibliography

[23] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. A User-guided Approach

to Program Analysis. In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2015, pages 462–473, New York, NY, USA, 2015. ACM.

[24] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. User-guided

Program Reasoning Using Bayesian Inference. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2018, pages

722–735, New York, NY, USA, 2018. ACM.

[25] Thomas W. Reps. Program Analysis via Graph Reachability. Information & Software

Technology, 40:701–726, 1997.

[26] SonarSource SA. Sonar uCFG. https://github.com/SonarSource/sonar-ucfg, 2018.

[27] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On Fast Large-scale

Program Analysis in Datalog. In Proceedings of the 25th International Conference on

Compiler Construction, CC 2016, pages 196–206, New York, NY, USA, 2016. ACM.

[28] Pavle Subotic, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz. Automatic

Index Selection for Large-Scale Datalog Computation. PVLDB, 12(2):141–153, 2018.

[29] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam,

Etienne Gagnon, and Charles Godin. Practical Virtual Method Call Resolution for Java.

SIGPLAN Not., 35(10):264–280, October 2000.

[30] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using Datalog with

Binary Decision Diagrams for Program Analysis. In Programming Languages and Systems,

Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings,

pages 97–118, 2005.

[31] Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. Effective Interactive Resolution of

Static Analysis Alarms. Proc. ACM Program. Lang., 1(OOPSLA):57:1–57:30, October 2017.

[32] David Zhao. Large-Scale Provenance for Soufflé . Master’s thesis, The University of

Sydney, Australia, 2017.

[33] David Zhao, Pavle Subotic, and Bernhard Scholz. Provenance for Large-scale Datalog.

CoRR, abs/1907.05045, 2019.

57

https://github.com/SonarSource/sonar-ucfg

A Appendix

A.1 Reachability Versions

Tables A.1 and A.2 show runtime and memory usage of bottom up evaluation for running

four different configurations of the the graph reachability analysis presented in Section 5.1.2.

For time as well as memory, the first column describes the analysis without modifications

as presented in Listing 5.4. The second column contains results for the modified analysis

presented in Listing 5.5 that considers only paths starting in source nodes. The third column

describes the same analysis but with using Soufflé’s magic set transformation, the fourth

column again combines this analysis with magic set transformation.

It becomes apparent that there is no big performance difference between the last three config-

urations, while the first version of the analysis, i.e. the original version of the analysis without

any magic set transformation, is several orders of magnitudes slower and uses several orders

of magnitude more memory. For the first configuration, some benchmarks even do not stay

within the maximum time of 15 minutes or the maximum memory of 20 GB, which leads to

missing values in the table.

59

Appendix

Time (s) Maximum RSS (KB)
standard src magic src magic standard src magic src magic

1 nan 1.48e-01 1.35e-01 1.27e-01 nan 28784 27132 27296
2 nan 1.01e+00 1.04e+00 9.32e-01 nan 115628 111476 111296
10 4.74e+00 1.99e-02 2.01e-02 1.99e-02 112500 6164 6264 6288
17 1.41e+02 8.54e-02 8.46e-02 8.26e-02 2976292 12180 12108 12116
26 nan 1.61e-02 1.27e-02 1.32e-02 nan 7512 7304 7312
29 5.86e+02 4.44e-01 4.73e-01 4.46e-01 12091864 28696 27600 27864
33 nan 7.10e-02 6.80e-02 6.60e-02 nan 13412 13080 13076
38 7.59e+02 1.50e-01 1.32e-01 1.28e-01 15811080 20092 19116 19084
41 1.88e+01 1.64e-02 1.51e-02 1.68e-02 408312 7856 7760 7872
43 2.11e+02 1.31e-01 1.28e-01 1.26e-01 4612160 17984 17512 17740
45 1.21e+01 6.07e-02 5.78e-02 5.83e-02 289740 11728 11584 11460
46 nan 6.51e+00 6.73e+00 6.54e+00 nan 156888 154844 154896
79 1.11e+01 8.44e-02 8.40e-02 8.43e-02 254932 9080 8908 8792
80 2.55e+00 3.56e-03 3.94e-03 3.30e-03 64528 5680 5656 5732
85 2.92e+02 9.35e-02 8.69e-02 1.04e-01 6643088 16036 15376 15484
103 6.94e+01 2.36e-01 2.46e-01 2.41e-01 1616632 15144 15048 14900

Table A.1 – Bottom up time and maximum RSS for graph reachability without modifications
(standard), with modification (src), without modification and with magic sets (magic) and
with modifications and magic sets (src magic) on Java benchmarks.

Time (s) Maximum RSS (KB)
standard src magic src magic standard src magic src magic

2 nan 2.08e-01 nan 2.10e-01 nan 11512 nan 11224
7 nan 7.37e-02 5.95e-02 5.89e-02 nan 15352 14212 14268
11 nan 1.37e-01 1.34e-01 1.32e-01 nan 12656 12276 12384
12 1.47e+01 1.34e-01 1.33e-01 1.31e-01 373840 12876 12284 12240
13 7.46e+00 5.37e-02 4.83e-02 5.62e-02 179292 9932 9716 9724
14 3.94e+01 5.34e-02 4.50e-02 4.50e-02 856636 10624 10260 10136
18 nan 5.03e-01 4.52e-01 4.74e-01 nan 53168 49832 49672
26 2.83e+01 3.42e-02 2.88e-02 2.74e-02 707612 10396 9628 9624
36 nan 8.43e-01 7.07e-01 7.26e-01 nan 110196 102216 102184
44 nan 2.74e+00 2.76e+00 2.81e+00 nan 121388 115404 115548
47 1.76e+02 2.40e+00 2.49e+00 2.52e+00 3919700 66428 66224 66144
56 nan 1.23e+00 1.33e+00 1.37e+00 nan 60868 58572 58716
58 1.88e+02 1.32e+00 1.26e+00 1.33e+00 4001200 71040 67808 67784
59 7.38e+01 3.51e+00 3.75e+00 3.78e+00 1777600 93544 94828 94680
61 6.09e+02 4.98e-01 4.89e-01 4.98e-01 13673808 54328 51136 51172

Table A.2 – Bottom up time and maximum RSS for graph reachability without modifications
(standard), with modification (src), without modification and with magic sets (magic) and
with modifications and magic sets (src magic) on PHP benchmarks.

60

A.2. Magic set transformation

A.2 Magic set transformation

A.2.1 CFL rules

The rules for CFL reachability that are generated by Soufflé’s magic set transformation are

displayed in Listing A.1.

1 // -- +m0_backward+_bf --

2 .decl +m0_backward+_bf(x:symbol)

3

4 +m0_backward+_bf(x) :-

5 +m0_reachesSrcSink+_ff(),

6 src(x).

7

8 +m0_backward+_bf(y) :-

9 +m0_backward+_bf(x),

10 path+_bf(x,y).

11

12 +m0_backward+_bf(y) :-

13 +m0_backward+_bf(x),

14 ret(x,y).

15

16

17

18 // -- +m0_forward+_bf --

19 .decl +m0_forward+_bf(x:symbol)

20

21 +m0_forward+_bf(y) :-

22 +m0_reachesSrcSink+_ff(),

23 src(x),

24 backward+_bf(x,y).

25

26 +m0_forward+_bf(s) :-

27 +m0_forward+_bf(s).

28

29 +m0_forward+_bf(s) :-

30 +m0_forward+_bf(s).

31

32

33

34 // -- +m0_node+_b --

35 .decl +m0_node+_b(x:symbol)

61

Appendix

36

37 +m0_node+_b(s) :-

38 +m0_backward+_bf(s).

39

40 +m0_node+_b(s) :-

41 +m0_forward+_bf(s).

42

43

44

45 // -- +m0_onestep+_bb --

46 .decl +m0_onestep+_bb(x:symbol ,y:symbol)

47

48 +m0_onestep+_bb(x,y) :-

49 +m0_path+_bb(x,y).

50

51

52

53 // -- +m0_onestep+_bf --

54 .decl +m0_onestep+_bf(x:symbol)

55

56 +m0_onestep+_bf(x) :-

57 +m0_path+_bf(x).

58

59 +m0_onestep+_bf(x) :-

60 +m0_path+_bf(x).

61

62 +m0_onestep+_bf(x) :-

63 +m0_path+_bb(x,y).

64

65

66

67 // -- +m0_path+_bb --

68 .decl +m0_path+_bb(x:symbol ,y:symbol)

69

70 +m0_path+_bb(entry ,exit) :-

71 +m0_onestep+_bf(x),

72 continuation(x,y),

73 call(x,entry),

74 ret(exit ,y).

75

76 +m0_path+_bb(z,y) :-

77 +m0_path+_bb(x,y),

62

A.2. Magic set transformation

78 onestep+_bf(x,z).

79

80 +m0_path+_bb(entry ,exit) :-

81 +m0_onestep+_bb(x,y),

82 continuation(x,y),

83 call(x,entry),

84 ret(exit ,y).

85

86

87

88 // -- +m0_path+_bf --

89 .decl +m0_path+_bf(x:symbol)

90

91 +m0_path+_bf(x) :-

92 +m0_backward+_bf(x).

93

94 +m0_path+_bf(x) :-

95 +m0_forward+_bf(s),

96 forward+_bf(s,x).

97

98 +m0_path+_bf(z) :-

99 +m0_path+_bf(x),

100 onestep+_bf(x,z).

101

102

103

104 // -- +m0_reachesSrcSink+_ff --

105 .decl +m0_reachesSrcSink+_ff()

106

107 +m0_reachesSrcSink+_ff().

108

109

110

111 // -- backward+_bf --

112 .decl backward+_bf(x:symbol ,y:symbol)

113

114 backward+_bf(s,s) :-

115 +m0_backward+_bf(s),

116 node+_b(s).

117

118 backward+_bf(x,s) :-

119 +m0_backward+_bf(x),

63

Appendix

120 path+_bf(x,y),

121 backward+_bf(y,s).

122

123 backward+_bf(x,s) :-

124 +m0_backward+_bf(x),

125 ret(x,y),

126 backward+_bf(y,s).

127

128

129

130 // -- call --

131 .decl call(x:symbol ,y:symbol)

132

133 .output call

134

135

136

137 // -- continuation --

138 .decl continuation(x:symbol ,y:symbol)

139

140 .output continuation

141

142

143

144 // -- edge --

145 .decl edge(x:symbol ,y:symbol)

146

147 .output edge

148

149

150

151 // -- forward+_bf --

152 .decl forward+_bf(x:symbol ,y:symbol)

153

154 forward+_bf(s,s) :-

155 +m0_forward+_bf(s),

156 node+_b(s).

157

158 forward+_bf(s,y) :-

159 +m0_forward+_bf(s),

160 forward+_bf(s,x),

161 path+_bf(x,y).

64

A.2. Magic set transformation

162

163 forward+_bf(s,y) :-

164 +m0_forward+_bf(s),

165 forward+_bf(s,x),

166 call(x,y).

167

168

169

170 // -- node+_b --

171 .decl node+_b(x:symbol)

172

173 node+_b(s) :-

174 +m0_node+_b(s),

175 edge(s,_).

176

177 node+_b(s) :-

178 +m0_node+_b(s),

179 edge(_,s).

180

181 node+_b(s) :-

182 +m0_node+_b(s),

183 call(s,_).

184

185 node+_b(s) :-

186 +m0_node+_b(s),

187 call(_,s).

188

189 node+_b(s) :-

190 +m0_node+_b(s),

191 ret(_,s).

192

193

194

195 // -- onestep+_bb --

196 .decl onestep+_bb(x:symbol ,y:symbol)

197

198 onestep+_bb(x,y) :-

199 +m0_onestep+_bb(x,y),

200 edge(x,y).

201

202 onestep+_bb(x,y) :-

203 +m0_onestep+_bb(x,y),

65

Appendix

204 continuation(x,y),

205 call(x,entry),

206 ret(exit ,y),

207 path+_bb(entry ,exit).

208

209

210

211 // -- onestep+_bf --

212 .decl onestep+_bf(x:symbol ,y:symbol)

213

214 onestep+_bf(x,y) :-

215 +m0_onestep+_bf(x),

216 edge(x,y).

217

218 onestep+_bf(x,y) :-

219 +m0_onestep+_bf(x),

220 continuation(x,y),

221 call(x,entry),

222 ret(exit ,y),

223 path+_bb(entry ,exit).

224

225

226

227 // -- path+_bb --

228 .decl path+_bb(x:symbol ,y:symbol)

229

230 path+_bb(x,y) :-

231 +m0_path+_bb(x,y),

232 onestep+_bb(x,y).

233

234 path+_bb(x,y) :-

235 +m0_path+_bb(x,y),

236 onestep+_bf(x,z),

237 path+_bb(z,y).

238

239 // -- path+_bf --

240 .decl path+_bf(x:symbol ,y:symbol)

241

242 path+_bf(x,y) :-

243 +m0_path+_bf(x),

244 onestep+_bf(x,y).

245

66

A.2. Magic set transformation

246 path+_bf(x,y) :-

247 +m0_path+_bf(x),

248 onestep+_bf(x,z),

249 path+_bf(z,y).

250

251 // -- reachesSrcSink --

252 .decl reachesSrcSink(x:symbol ,y:symbol)

253

254 reachesSrcSink(arg0 ,arg1) :-

255 reachesSrcSink+_ff(arg0 ,arg1).

256 .output reachesSrcSink

257

258 // -- reachesSrcSink+_ff --

259 .decl reachesSrcSink+_ff(x:symbol ,y:symbol)

260

261 reachesSrcSink+_ff(x,z) :-

262 +m0_reachesSrcSink+_ff(),

263 src(x),

264 backward+_bf(x,y),

265 forward+_bf(y,z),

266 sink(z).

267

268 // -- ret --

269 .decl ret(x:symbol ,y:symbol)

270 .output ret

271

272 // -- sink --

273 .decl sink(x:symbol)

274 .output sink

275

276 // -- src --

277 .decl src(x:symbol)

278 .output src

Listing A.1 – Datalog rules for CFL reachability after performing magic set transformation

A.2.2 Experimental results for graph reachability

Tables A.3 to A.12 contain the experimental results for the comparison between subtree-

heights provenance and Soufflé’s provenance on the graph reachability analysis.

67

Appendix

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

1 1.27e-01 1.16e-01 1.32e-01 1.13e+00 27296 27420 29076 1.06e+00
2 9.32e-01 8.39e-01 1.25e+00 1.48e+00 111296 111768 127668 1.14e+00
10 1.99e-02 1.94e-02 2.32e-02 1.19e+00 6288 6572 7032 1.07e+00
17 8.26e-02 8.21e-02 9.88e-02 1.20e+00 12116 12284 15524 1.26e+00
26 1.32e-02 1.21e-02 1.41e-02 1.17e+00 7312 7748 7556 9.75e-01
29 4.46e-01 4.31e-01 5.45e-01 1.26e+00 27864 28032 41712 1.49e+00
33 6.60e-02 7.02e-02 8.37e-02 1.19e+00 13076 13468 15412 1.14e+00
38 1.28e-01 1.38e-01 1.39e-01 1.01e+00 19084 19248 22148 1.15e+00
41 1.68e-02 1.41e-02 1.66e-02 1.18e+00 7872 8120 8552 1.05e+00
43 1.26e-01 1.33e-01 1.69e-01 1.27e+00 17740 17876 21588 1.21e+00
45 5.83e-02 7.09e-02 6.75e-02 9.52e-01 11460 11764 13892 1.18e+00
46 6.54e+00 6.48e+00 8.48e+00 1.31e+00 154896 155104 316092 2.04e+00
79 8.43e-02 8.50e-02 1.14e-01 1.34e+00 8792 9112 12956 1.42e+00
80 3.30e-03 3.18e-03 3.71e-03 1.17e+00 5732 5800 5752 9.92e-01
85 1.04e-01 8.57e-02 1.14e-01 1.34e+00 15484 15872 18844 1.19e+00
103 2.41e-01 2.34e-01 3.05e-01 1.30e+00 14900 15404 24700 1.60e+00

Table A.3 – Bottom up time and maximum RSS for running graph reachability analysis with
magic sets on Java benchmarks without provenance (no), with Soufflé’s explain provenance
(exp), and with subtree-height provenance (sH).

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

2 2.10e-01 2.12e-01 2.98e-01 1.41e+00 11224 11668 18368 1.57e+00
7 5.89e-02 6.17e-02 6.65e-02 1.08e+00 14268 14532 15220 1.05e+00
11 1.32e-01 1.35e-01 1.74e-01 1.29e+00 12384 12544 17068 1.36e+00
12 1.31e-01 1.43e-01 1.76e-01 1.24e+00 12240 12584 17132 1.36e+00
13 5.62e-02 5.09e-02 5.65e-02 1.11e+00 9724 9924 11108 1.12e+00
14 4.50e-02 4.61e-02 5.18e-02 1.12e+00 10136 10408 11664 1.12e+00
18 4.74e-01 4.43e-01 5.67e-01 1.28e+00 49672 50004 56300 1.13e+00
26 2.74e-02 2.87e-02 2.83e-02 9.84e-01 9624 9992 10352 1.04e+00
36 7.26e-01 7.32e-01 7.81e-01 1.07e+00 102184 102576 108572 1.06e+00
44 2.81e+00 2.80e+00 3.73e+00 1.33e+00 115548 115600 164580 1.42e+00
47 2.52e+00 2.52e+00 3.59e+00 1.42e+00 66144 66468 137116 2.06e+00
56 1.37e+00 1.37e+00 1.85e+00 1.35e+00 58716 59008 87784 1.49e+00
58 1.33e+00 1.36e+00 1.75e+00 1.29e+00 67784 67976 95872 1.41e+00
59 3.78e+00 3.72e+00 5.38e+00 1.44e+00 94680 94952 199700 2.10e+00
61 4.98e-01 5.16e-01 6.10e-01 1.18e+00 51172 51368 60184 1.17e+00

Table A.4 – Bottom up time and maximum RSS for running graph reachability analysis with
magic sets on PHP benchmarks without provenance (no), with Soufflé’s explain provenance
(exp), and with subtree-height provenance (sH).

68

A.2. Magic set transformation

exp sH
trees # nodes avg # nodes # nodes avg # nodes

1 1.79e+02 3.11e+04 1.74e+02 3.11e+04 1.74e+02
2 1.37e+03 2.37e+05 1.72e+02 2.37e+05 1.72e+02
10 1.62e+02 3.60e+04 2.22e+02 3.60e+04 2.22e+02
17 5.46e+02 1.40e+05 2.56e+02 1.40e+05 2.56e+02
26 6.20e+01 5.30e+03 8.55e+01 5.30e+03 8.55e+01
29 1.32e+03 2.97e+05 2.25e+02 2.97e+05 2.25e+02
33 8.40e+01 1.15e+04 1.36e+02 1.15e+04 1.36e+02
38 8.70e+01 1.13e+04 1.30e+02 1.13e+04 1.30e+02
41 7.40e+01 1.65e+04 2.23e+02 1.65e+04 2.23e+02
43 1.05e+02 2.30e+04 2.19e+02 2.30e+04 2.19e+02
45 6.80e+01 1.52e+04 2.24e+02 1.52e+04 2.24e+02
46 1.08e+04 1.39e+06 1.29e+02 1.39e+06 1.29e+02
79 2.50e+02 4.58e+04 1.83e+02 4.58e+04 1.83e+02
80 5.20e+01 1.20e+04 2.31e+02 1.20e+04 2.31e+02
85 5.60e+01 9.26e+03 1.65e+02 9.26e+03 1.65e+02
103 1.68e+03 1.52e+05 9.01e+01 1.52e+05 9.01e+01

Table A.5 – Number of trees and average number of nodes per tree for running graph reacha-
bility analysis with magic sets on Java benchmarks with Soufflé’s explain provenance (exp)
and with subtree-height provenance (sH).

exp sH
trees # nodes avg # nodes # nodes avg # nodes

2 6.72e+02 1.07e+05 1.59e+02 1.07e+05 1.59e+02
7 4.92e+02 6.25e+04 1.27e+02 6.25e+04 1.27e+02
11 2.62e+03 2.76e+05 1.06e+02 2.76e+05 1.06e+02
12 2.62e+03 2.76e+05 1.06e+02 2.76e+05 1.06e+02
13 9.67e+02 1.43e+05 1.48e+02 1.43e+05 1.48e+02
14 1.16e+03 2.33e+05 2.02e+02 2.33e+05 2.02e+02
18 2.71e+03 2.70e+05 9.97e+01 2.70e+05 9.97e+01
26 2.23e+02 1.70e+04 7.61e+01 1.70e+04 7.61e+01
36 7.10e+01 5.97e+03 8.41e+01 5.97e+03 8.41e+01
44 3.81e+03 5.60e+05 1.47e+02 5.60e+05 1.47e+02
47 8.83e+03 1.19e+06 1.34e+02 1.19e+06 1.34e+02
56 1.25e+04 1.51e+06 1.20e+02 1.51e+06 1.20e+02
58 1.57e+04 2.84e+06 1.81e+02 2.84e+06 1.81e+02
59 6.99e+04 6.71e+06 9.59e+01 6.71e+06 9.59e+01
61 1.20e+03 1.42e+05 1.18e+02 1.42e+05 1.18e+02

Table A.6 – Number of trees and average number of nodes per tree for running graph reacha-
bility analysis with magic sets on PHP benchmarks with Soufflé’s explain provenance (exp)
and with subtree-height provenance (sH).

69

Appendix

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

1 1.13e+01 1.61e+00 1.42e-01 7.36e+07 4.06e+06 5.51e-02
2 3.58e+02 4.97e+01 1.39e-01 1.82e+09 9.48e+07 5.22e-02
10 6.44e-01 2.16e-01 3.36e-01 3.65e+06 1.79e+05 4.91e-02
17 7.68e+00 1.52e+00 1.97e-01 4.66e+07 3.15e+06 6.77e-02
26 2.91e-02 2.71e-02 9.34e-01 3.74e+04 9.18e+03 2.45e-01
29 5.26e+01 7.81e+00 1.48e-01 3.20e+08 1.89e+07 5.91e-02
33 1.48e+00 2.72e-01 1.84e-01 9.92e+06 7.45e+05 7.52e-02
38 3.29e+00 4.81e-01 1.46e-01 2.27e+07 1.56e+06 6.85e-02
41 4.01e-01 1.23e-01 3.06e-01 2.36e+06 1.24e+05 5.26e-02
43 3.31e+00 5.00e-01 1.51e-01 2.46e+07 1.09e+06 4.42e-02
45 2.60e-01 9.71e-02 3.74e-01 1.38e+06 7.85e+04 5.70e-02
46 6.85e+02 1.33e+02 1.94e-01 3.67e+09 3.31e+08 9.02e-02
79 1.19e+00 3.46e-01 2.92e-01 6.60e+06 4.35e+05 6.60e-02
80 1.92e-01 7.21e-02 3.76e-01 1.33e+06 6.31e+04 4.76e-02
85 1.62e+00 2.39e-01 1.47e-01 1.21e+07 6.34e+05 5.23e-02
103 1.01e+01 2.38e+00 2.34e-01 6.45e+07 6.47e+06 1.00e-01

Table A.7 – Time for constructing proof trees and number of index accesses for all outputs for
running graph reachability analysis with magic sets on Java benchmarks with Soufflé’s explain
provenance (exp) and with subtree-heights provenance (sH).

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

2 2.33e+00 7.31e-01 3.14e-01 1.45e+07 9.07e+05 6.23e-02
7 3.32e+00 8.23e-01 2.48e-01 1.75e+07 1.94e+06 1.11e-01
11 9.29e+00 2.58e+00 2.78e-01 5.16e+07 5.07e+06 9.83e-02
12 9.21e+00 2.59e+00 2.81e-01 5.16e+07 5.07e+06 9.83e-02
13 3.46e+00 1.10e+00 3.17e-01 1.77e+07 1.43e+06 8.04e-02
14 1.12e+01 2.24e+00 2.00e-01 7.10e+07 4.05e+06 5.71e-02
18 1.18e+02 2.41e+01 2.03e-01 4.86e+08 5.61e+07 1.15e-01
26 1.14e+00 2.64e-01 2.31e-01 6.85e+06 7.18e+05 1.05e-01
36 3.02e+00 5.18e-01 1.71e-01 1.40e+07 1.33e+06 9.47e-02
44 5.04e+02 6.35e+01 1.26e-01 1.97e+09 1.22e+08 6.19e-02
47 1.24e+02 2.49e+01 2.01e-01 8.63e+08 7.14e+07 8.28e-02
56 3.87e+02 8.71e+01 2.25e-01 1.65e+09 2.01e+08 1.22e-01
58 1.14e+02 2.55e+01 2.24e-01 6.40e+08 3.77e+07 5.89e-02
59 2.59e+02 7.06e+01 2.72e-01 1.56e+09 1.67e+08 1.07e-01
61 2.94e+01 6.37e+00 2.17e-01 1.89e+08 1.71e+07 9.05e-02

Table A.8 – Time for constructing proof trees and number of index accesses for all outputs for
running graph reachability analysis with magic sets on PHP benchmarks with Soufflé’s explain
provenance (exp) and with subtree-heights provenance (sH).

70

A.2. Magic set transformation

1 1.03e-02
2 1.05e-01
10 4.09e-03
17 1.79e-02
26 5.74e-04
29 8.43e-02
33 1.13e-02
38 1.60e-02
41 1.58e-03
43 2.38e-02
45 1.16e-02
46 1.07e+00
79 2.48e-02
80 3.04e-04
85 1.61e-02
103 5.47e-02

Table A.9 – Time (s) for populating prove-
nance indexes for running graph reach-
ability analysis with magic sets on Java
benchmarks.

2 5.91e-02
7 3.36e-03
11 3.18e-02
12 3.13e-02
13 8.29e-03
14 6.87e-03
18 4.57e-02
26 1.22e-03
36 4.18e-02
44 4.03e-01
47 5.27e-01
56 2.11e-01
58 2.11e-01
59 8.26e-01
61 6.23e-02

Table A.10 – Time (s) for populating prove-
nance indexes for running graph reach-
ability analysis with magic sets on PHP
benchmarks.

A.2.3 Experimental results for CFL reachability

Tables A.13 to A.22 contain the experimental results for the comparison between subtree-

heights provenance and Soufflé’s provenance on the CFL reachability analysis.

71

Appendix

Maximum RSS (KB)
exp sH sH/exp

1 27420 30780 1.12e+00
2 111768 142628 1.28e+00
10 6572 8328 1.27e+00
17 12284 18540 1.51e+00
26 7748 8000 1.03e+00
29 28032 55884 1.99e+00
33 13468 17380 1.29e+00
38 19248 25112 1.30e+00
41 8120 8816 1.09e+00
43 17876 25728 1.44e+00
45 11764 16236 1.38e+00
46 155104 483380 3.12e+00
79 9112 17412 1.91e+00
80 5800 5752 9.92e-01
85 15872 21604 1.36e+00
103 15404 34700 2.25e+00

Table A.11 – Maximum resident set size for
running graph reachability analysis with
magic sets on Java benchmarks with Souf-
flé’s explain provenance (exp) and with
subtree-heights provenance (sH).

Maximum RSS (KB)
exp sH sH/exp

2 11668 28896 2.48e+00
7 14532 15748 1.08e+00
11 12544 22792 1.82e+00
12 12584 22852 1.82e+00
13 9924 12752 1.28e+00
14 10408 12780 1.23e+00
18 50004 63812 1.28e+00
26 9992 10676 1.07e+00
36 102576 115872 1.13e+00
44 115600 222780 1.93e+00
47 66468 219136 3.30e+00
56 59008 120104 2.04e+00
58 67976 132280 1.95e+00
59 94952 326864 3.44e+00
61 51368 70656 1.38e+00

Table A.12 – Maximum resident set size for
running graph reachability analysis with
magic sets on PHP benchmarks with Souf-
flé’s explain provenance (exp) and with
subtree-heights provenance (sH).

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

26 6.83e+00 6.84e+00 1.05e+01 1.53e+00 102156 102400 115032 1.12e+00
39 6.29e-01 6.30e-01 9.06e-01 1.44e+00 11024 11308 13816 1.22e+00
103 3.89e+01 3.84e+01 5.81e+01 1.51e+00 110196 110464 147084 1.33e+00
110 4.85e+01 4.81e+01 7.24e+01 1.50e+00 124420 124576 169708 1.36e+00
111 4.33e+01 4.31e+01 6.46e+01 1.50e+00 110484 110668 150920 1.36e+00

Table A.13 – Bottom up time and maximum RSS for running CFL reachability analysis with
magic sets on Java benchmarks without provenance (no), with Soufflé’s explain provenance
(exp), and with subtree-heights provenance (sH).

72

A.2. Magic set transformation

Bottom up time (s) Bottom up maximum RSS (KB)
no exp sH sH/exp no exp sH sH/exp

2 1.23e+01 1.24e+01 1.82e+01 1.47e+00 24864 24952 43288 1.73e+00
7 4.05e-01 4.14e-01 5.16e-01 1.25e+00 17072 17472 19480 1.11e+00
11 3.69e-01 3.72e-01 4.91e-01 1.32e+00 11196 11548 13480 1.17e+00
12 3.79e-01 3.68e-01 5.17e-01 1.40e+00 11396 11608 13296 1.15e+00
18 1.75e+00 1.70e+00 2.18e+00 1.28e+00 51812 52044 55944 1.07e+00
30 8.71e+00 8.42e+00 1.22e+01 1.45e+00 76676 76832 89784 1.17e+00
37 1.16e+01 1.15e+01 1.60e+01 1.39e+00 59920 60272 84196 1.40e+00
47 6.28e+01 6.23e+01 9.53e+01 1.53e+00 67172 67220 122692 1.83e+00
56 5.96e-01 5.89e-01 6.81e-01 1.16e+00 39920 40040 41912 1.05e+00

Table A.14 – Bottom up time and maximum RSS for running CFL reachability analysis with
magic sets on PHP benchmarks without provenance (no), with Soufflé’s explain provenance
(exp), and with subtree-heights provenance (sH).

exp sH
trees # nodes avg # nodes # nodes avg # nodes

26 62 4.88e+05 7.88e+03 2.15e+05 3.47e+03
39 148 2.29e+06 1.55e+04 1.97e+06 1.33e+04
103 385 3.41e+06 8.85e+03 2.01e+06 5.22e+03
110 271 1.93e+06 7.13e+03 9.84e+05 3.63e+03
111 303 2.06e+06 6.79e+03 1.13e+06 3.72e+03

Table A.15 – Number of trees and average number of nodes per tree for running CFL reachabil-
ity analysis with magic sets on Java benchmarks with Soufflé’s explain provenance (exp) and
with subtree-heights provenance (sH).

exp sH
trees # nodes avg # nodes # nodes avg # nodes

2 5.50e+01 6.99e+05 1.27e+04 6.25e+05 1.14e+04
7 5.80e+01 4.00e+05 6.89e+03 3.89e+05 6.71e+03
11 7.20e+01 5.19e+05 7.20e+03 1.60e+05 2.22e+03
12 7.20e+01 5.19e+05 7.20e+03 1.60e+05 2.22e+03
18 2.92e+02 3.15e+06 1.08e+04 2.79e+06 9.55e+03
30 2.83e+02 3.35e+06 1.18e+04 1.98e+06 6.98e+03
37 5.61e+02 5.04e+06 8.98e+03 4.09e+06 7.29e+03
47 1.86e+02 6.97e+05 3.75e+03 2.36e+05 1.27e+03
56 1.33e+02 1.31e+06 9.84e+03 4.12e+05 3.10e+03

Table A.16 – Number of trees and average number of nodes per tree for running CFL reachabil-
ity analysis with magic sets on PHP benchmarks with Soufflé’s explain provenance (exp) and
with subtree-heights provenance (sH).

73

Appendix

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

26 2.40e+01 4.16e+00 1.73e-01 101555248 5498352 5.41e-02
39 6.98e+01 2.72e+01 3.89e-01 309651039 17608636 5.69e-02
103 6.20e+02 1.16e+02 1.86e-01 -1255719903 221401164 -1.76e-01
110 4.15e+02 5.99e+01 1.44e-01 2006422092 102422760 5.10e-02
111 3.85e+02 6.09e+01 1.58e-01 1829130860 103248477 5.64e-02

Table A.17 – Time for constructing proof trees and number of index accesses for all outputs for
running CFL reachability analysis with magic sets on Java benchmarks with Soufflé’s explain
provenance (exp) and with subtree-heights provenance (sH).

Proof tree construction time (s) Number of index lookups
exp sH sH/exp exp sH sH/exp

2 2.60e+01 9.13e+00 3.52e-01 1.36e+08 9.28e+06 6.82e-02
7 8.87e+00 5.18e+00 5.84e-01 3.09e+07 2.75e+06 8.92e-02
11 1.86e+01 2.61e+00 1.41e-01 1.14e+08 3.41e+06 3.00e-02
12 1.87e+01 2.60e+00 1.39e-01 1.14e+08 3.41e+06 3.00e-02
18 8.71e+01 3.51e+01 4.03e-01 3.59e+08 1.19e+07 3.31e-02
30 2.01e+02 3.88e+01 1.93e-01 1.00e+09 4.16e+07 4.14e-02
37 6.71e+02 1.30e+02 1.94e-01 3.73e+09 2.05e+08 5.49e-02
47 1.23e+02 8.47e+00 6.90e-02 7.85e+08 1.65e+07 2.10e-02
56 3.79e+01 5.99e+00 1.58e-01 2.09e+08 5.16e+06 2.47e-02

Table A.18 – Time for constructing proof trees and number of index accesses for all outputs for
running CFL reachability analysis with magic sets on PHP benchmarks with Soufflé’s explain
provenance (exp) and with subtree-heights provenance (sH).

benchmark 1.03e-02
26 1.97e-01
39 2.10e-02
103 3.76e-01
110 4.61e-01
111 4.06e-01

Table A.19 – Time (s) for populating prove-
nance indexes for running CFL reachabil-
ity analysis with magic sets on Java bench-
marks.

2 1.79e-01
7 2.94e-02
11 1.91e-02
12 2.19e-02
18 7.74e-02
30 1.91e-01
37 2.49e-01
47 5.58e-01
56 4.66e-02

Table A.20 – Time (s) for populating prove-
nance indexes for running CFL reachabil-
ity analysis with magic sets on PHP bench-
marks.

74

A.2. Magic set transformation

Maximum RSS (KB)
exp sH sH/exp

26 102400 148068 1.45e+00
39 11308 17752 1.57e+00
103 110464 211740 1.92e+00
110 124576 248092 1.99e+00
111 110668 221176 2.00e+00

Table A.21 – Maximum resident set size
for running CFL reachability analysis with
magic sets on Java benchmarks with Souf-
flé’s explain provenance (exp) and with
subtree-heights provenance (sH).

Maximum RSS (KB)
exp sH sH/exp

2 24952 74680 2.99e+00
7 17472 24792 1.42e+00
11 11548 16828 1.46e+00
12 11608 16756 1.44e+00
18 52044 68268 1.31e+00
30 76832 121228 1.58e+00
37 60272 126812 2.10e+00
47 67220 215384 3.20e+00
56 40040 49544 1.24e+00

Table A.22 – Maximum resident set size
for running CFL reachability analysis with
magic sets on PHP benchmarks with Souf-
flé’s explain provenance (exp) and with
subtree-heights provenance (sH).

75

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Introduction
	Contributions
	Motivation and Running Example
	Overview

	Related Work
	Preliminaries
	Datalog evaluation
	Magic Set Transformation

	Provenance in Soufflé
	Proof Trees
	Proof Annotations
	Provenance Evaluation Strategy
	Proof Tree Generation

	Subtree-heights Provenance
	Key intuition
	Proof annotations

	Subtree-heights Provenance Evaluation Strategy
	Proof tree generation
	Implementation in Soufflé

	Experimental Evaluation
	Experimental Setup
	Analysis Pipeline
	Analyses
	Benchmarks

	Results
	Bottom Up Evaluation using Subtree-heights Provenance
	Proof Tree Construction using Subtree-heigths Provenance
	Magic Set Transformation
	Summary

	Conclusion
	Future Work

	Bibliography
	Appendix
	Reachability Versions
	Magic set transformation
	CFL rules
	Experimental results for graph reachability
	Experimental results for CFL reachability

