
An Efficient Interpreter for
Soufflé

Honours Presentation

Xiaowen Hu

July 21, 2020

Introduction

1. Soufflé [8] is a logic engine.
I Static Program Analysis [2], Security Analysis [7], Network Analysis [3].

2. Soufflé’s state-of-the-art synthesiser [12].
I Translate logic programs to Relational Algebra Machine (RAM) programs.
I Synthesise parallel C++ code from RAM.
I High-efficient, parallel data structures [10, 9].

3. Interpreter is necessary for Development Cycle, Debugging, and Portability
I Synthesiser takes minutes for generating executable C++
I Interpreter is the only option in some cloud environment
I Current interpreter scales poorly in real-world program

Problem

How to build interpreters that are fast and maintainable?

University of Sydney 2

Introduction

1. Soufflé [8] is a logic engine.
I Static Program Analysis [2], Security Analysis [7], Network Analysis [3].

2. Soufflé’s state-of-the-art synthesiser [12].
I Translate logic programs to Relational Algebra Machine (RAM) programs.
I Synthesise parallel C++ code from RAM.
I High-efficient, parallel data structures [10, 9].

3. Interpreter is necessary for Development Cycle, Debugging, and Portability
I Synthesiser takes minutes for generating executable C++
I Interpreter is the only option in some cloud environment
I Current interpreter scales poorly in real-world program

Problem

How to build interpreters that are fast and maintainable?

University of Sydney 2

Introduction

1. Soufflé [8] is a logic engine.
I Static Program Analysis [2], Security Analysis [7], Network Analysis [3].

2. Soufflé’s state-of-the-art synthesiser [12].
I Translate logic programs to Relational Algebra Machine (RAM) programs.
I Synthesise parallel C++ code from RAM.
I High-efficient, parallel data structures [10, 9].

3. Interpreter is necessary for Development Cycle, Debugging, and Portability
I Synthesiser takes minutes for generating executable C++
I Interpreter is the only option in some cloud environment
I Current interpreter scales poorly in real-world program

Problem

How to build interpreters that are fast and maintainable?

University of Sydney 2

Introduction

1. Soufflé [8] is a logic engine.
I Static Program Analysis [2], Security Analysis [7], Network Analysis [3].

2. Soufflé’s state-of-the-art synthesiser [12].
I Translate logic programs to Relational Algebra Machine (RAM) programs.
I Synthesise parallel C++ code from RAM.
I High-efficient, parallel data structures [10, 9].

3. Interpreter is necessary for Development Cycle, Debugging, and Portability
I Synthesiser takes minutes for generating executable C++
I Interpreter is the only option in some cloud environment
I Current interpreter scales poorly in real-world program

Problem

How to build interpreters that are fast and maintainable?

University of Sydney 2

Logic Language

Soufflé is a variant of Datalog [1]: programmer express what to compute instead how
to compute.

Security analysis in Logic

1 void m(int i, int j)

2 {

3 while (i < j)

4 {

5 protect();

6 ++i;

7 }

8 vulnerable();

9 }

while

protect

inc

vulnerable

Unsafe("while").

Unsafe(y):-

Unsafe(x),

Edge(x, y),

!Protect(y).

Violation(x):-

Vulnerable(x),

Unsafe(x).
University of Sydney 3

Relation Algebra Machine

I Soufflé translates logic programs to RAM (using Futamura Projections [13])
I An imperative and relational program representation.

I Example rule for predicate Violation

Violation(x):- Vulnerable(x), Unsafe(x).

I RAM Representation of example rule

1 IF ((NOT (Vulnerable = ∅)) AND (NOT (Unsafe = ∅)))
2 FOR a IN Vulnerable

3 IF (a) ∈ Unsafe

4 PROJECT (a) INTO Violation

I Soufflé’s interpreter executes the RAM program.

University of Sydney 4

Background: AST Interpreters

I Abstract Syntax Tree (AST)
Interpreter.

I Tree structure as an input.

I Recursive execution via tree
traversal.

I Implemented as a Visitor Pattern in
an Object-Oriented Language
I slow because of double-dispatch

Assignment

Variable

a

BinaryAdd

Variable

b

Constant

1

1

2 3

4
5

function call
function return

University of Sydney 5

Background: AST Interpreters

I Abstract Syntax Tree (AST)
Interpreter.

I Tree structure as an input.

I Recursive execution via tree
traversal.

I Implemented as a Visitor Pattern in
an Object-Oriented Language
I slow because of double-dispatch

University of Sydney 5

Background: Virtual Machine Interpreter
I Virtual Machine (VM) interpreter.
I Sequential code stream

I Virtual Program Counter (vPC)
I Increment vPC after statement execution
I Branching by setting vPC

I Implemented with
I Switch statement as instruction decoder
I Variables capturing executing state including vPC

PUSH 1

PUSH @b

ADD

STORE @a

vPC

Program Stack

SP

PUSH 1

PUSH @b

ADD

STORE @a

vPC

1

Program Stack

SP

vPC ++

University of Sydney 6

Background: Virtual Machine Interpreter
I Virtual Machine (VM) interpreter.
I Sequential code stream

I Virtual Program Counter (vPC)
I Increment vPC after statement execution
I Branching by setting vPC

I Implemented with
I Switch statement as instruction decoder
I Variables capturing executing state including vPC

PUSH 1

PUSH @b

ADD

STORE @a

vPC

Program Stack

SP

PUSH 1

PUSH @b

ADD

STORE @a

vPC

1

Program Stack

SP

vPC ++

University of Sydney 6

Background: Interpreter Optimisations

Many optimisation techniques are invented to improve Interpreter performance.
1. Indirect threaded code [4]

I Utilizes goto statement and label-as-value extension.
I Dispatch at the end of each virtual instruction - individual buffer.
I Increase prediction rate in Branch Target Buffer (BTB).

2. Super-instruction [5]
I Build specialized instruction by amalgamating consecutive instructions.
I Less instructions leads to less dispatch.

Code Stream Prediction result

start: A A

B goto

A A

goto start B

Figure: Indirect threaded code

Code Stream Prediction result

start: A B A goto

goto start A B A

Figure: Super-instruction

Importance

As modern CPU architectures improved, branch misprediction is no longer as hurtful as
a decade ago [11].

University of Sydney 7

Background: Interpreter Optimisations

Many optimisation techniques are invented to improve Interpreter performance.
1. Indirect threaded code [4]

I Utilizes goto statement and label-as-value extension.
I Dispatch at the end of each virtual instruction - individual buffer.
I Increase prediction rate in Branch Target Buffer (BTB).

2. Super-instruction [5]
I Build specialized instruction by amalgamating consecutive instructions.
I Less instructions leads to less dispatch.

Code Stream Prediction result

start: A A

B goto

A A

goto start B

Figure: Indirect threaded code

Code Stream Prediction result

start: A B A goto

goto start A B A

Figure: Super-instruction

Importance

As modern CPU architectures improved, branch misprediction is no longer as hurtful as
a decade ago [11].

University of Sydney 7

Background: Interpreter Optimisations

Many optimisation techniques are invented to improve Interpreter performance.

1. Indirect threaded code [4]
I Utilizes goto statement and label-as-value extension.
I Dispatch at the end of each virtual instruction - individual buffer.
I Increase prediction rate in Branch Target Buffer (BTB).

2. Super-instruction [5]
I Build specialized instruction by amalgamating consecutive instructions.
I Less instructions leads to less dispatch.

Importance

As modern CPU architectures improved, branch misprediction is no longer as hurtful as
a decade ago [11].

University of Sydney 7

Switch-based Shadow Tree Interpreter

Traditional AST interpreter suffers several issues.

1. Shared states among multiple execution modes in AST
I Compiler and Interpreter require different states in AST

2. Slow execution because of double dispatch in Visitor Pattern [6] (two virtual calls).

Advantages of our Switch-based Shadow Tree Interpreter Technique:

1. Separate descriptive tree information (i.e. AST) from execution state of
interpreter with light-weight Shadow Tree.

2. Shadow Node contains execution state: encoding of tables / fast look-ups for
interpreter

3. Switch dispatch on tagged nodes.

University of Sydney 8

Switch-based Shadow Tree Interpreter

Traditional AST interpreter suffers several issues.

1. Shared states among multiple execution modes in AST
I Compiler and Interpreter require different states in AST

2. Slow execution because of double dispatch in Visitor Pattern [6] (two virtual calls).

Advantages of our Switch-based Shadow Tree Interpreter Technique:

1. Separate descriptive tree information (i.e. AST) from execution state of
interpreter with light-weight Shadow Tree.

2. Shadow Node contains execution state: encoding of tables / fast look-ups for
interpreter

3. Switch dispatch on tagged nodes.

University of Sydney 8

Switch-based Shadow Tree Interpreter

1. Shadow Tree takes the shape of
Source IR (e.g. AST).

2. Each Shadow Node has a shadow
pointer, referencing the source node.

3. Each Shadow Node has a Enum,
representing its operation type.

University of Sydney 9

Soufflé’s Interpreters

I Two high-performance implementations for evaluation purposes:
I Soufflé’s Switch-based Shadow Tree Interpreter called STI.
I Soufflé’s Stack-based Virtual-Machine Interpreter called SVM.

I Require a data-structure adaptor for relational data-structure.
I Souffle’s relational data-structures are statically typed.
I A uniform interface is required for interpreter access.
I Unified interface highly tuned for performance.

University of Sydney 10

Soufflé Tree Interpreter implementations

Soufflé Tree Interpreter (STI) utilize the SSTI strategy.

1. Shadowing the RAM.

2. Switch-dispatch on shadow nodes.

3. Runtime optimisation directly implemented in Shadow Node.

4. Recursive tree traversal, coarse-grained instruction set.

University of Sydney 11

Soufflé Tree Interpreter implementations

Soufflé Tree Interpreter (STI) utilize the SSTI strategy.

1. Shadowing the RAM.

2. Switch-dispatch on shadow nodes.

3. Runtime optimisation directly implemented in Shadow Node.

4. Recursive tree traversal, coarse-grained instruction set.

University of Sydney 11

Soufflé Tree Interpreter implementations

Soufflé Tree Interpreter (STI) utilize the SSTI strategy.

1. Shadowing the RAM.

2. Switch-dispatch on shadow nodes.

3. Runtime optimisation directly implemented in Shadow Node.

4. Recursive tree traversal, coarse-grained instruction set.

University of Sydney 11

Soufflé Tree Interpreter implementations

Soufflé Tree Interpreter (STI) utilize the SSTI strategy.

1. Shadowing the RAM.

2. Switch-dispatch on shadow nodes.

3. Runtime optimisation directly implemented in Shadow Node.

4. Recursive tree traversal, coarse-grained instruction set.

University of Sydney 11

Soufflé Virtual Machine implementations

Soufflé Virtual Machine (SVM) utilize the stack-based Virtual Machine architecture.

1. RAM are further translated into bytecode representation.

2. Switch-dispatch on bytecode.

3. Runtime information stored in separated data structure.

4. Sequential execution model, instructions are fine-grained - small and intensive.

University of Sydney 12

Soufflé Virtual Machine implementations

Soufflé Virtual Machine (SVM) utilize the stack-based Virtual Machine architecture.

1. RAM are further translated into bytecode representation.

2. Switch-dispatch on bytecode.

3. Runtime information stored in separated data structure.

4. Sequential execution model, instructions are fine-grained - small and intensive.

University of Sydney 12

Soufflé Virtual Machine implementations

Soufflé Virtual Machine (SVM) utilize the stack-based Virtual Machine architecture.

1. RAM are further translated into bytecode representation.

2. Switch-dispatch on bytecode.

3. Runtime information stored in separated data structure.

4. Sequential execution model, instructions are fine-grained - small and intensive.

University of Sydney 12

Soufflé Virtual Machine implementations

Soufflé Virtual Machine (SVM) utilize the stack-based Virtual Machine architecture.

1. RAM are further translated into bytecode representation.

2. Switch-dispatch on bytecode.

3. Runtime information stored in separated data structure.

4. Sequential execution model, instructions are fine-grained - small and intensive.

University of Sydney 12

Shadow Tree v.s. Bytecode

Shadow Tree
I Minimum implementation effort.

I Instruction set comes for ‘free’.
I Single pass generation.

I Runtime optimisations are
maintainable.
I Execution state inserted into

Shadow Nodes, without violating
engineering concern.

I Optimisation does not break error
reporting.

I Complexity of the algorithm well
contained in the tree node.

I Coarse-grained instruction set.

Bytecode
I Requires extra effort.

I Design a separate representation.
I Multiple passes to handle virtual

branch.

I Optimisations are tedious to
implement.
I Lose original information after

name encoding.
I Relies on separated data structure

- tight coupling.

I Fine-grained instruction set.

University of Sydney 13

Shadow Tree v.s. Bytecode

Shadow Tree
I Minimum implementation effort.

I Instruction set comes for ‘free’.
I Single pass generation.

I Runtime optimisations are
maintainable.
I Execution state inserted into

Shadow Nodes, without violating
engineering concern.

I Optimisation does not break error
reporting.

I Complexity of the algorithm well
contained in the tree node.

I Coarse-grained instruction set.

Bytecode
I Requires extra effort.

I Design a separate representation.
I Multiple passes to handle virtual

branch.

I Optimisations are tedious to
implement.
I Lose original information after

name encoding.
I Relies on separated data structure

- tight coupling.

I Fine-grained instruction set.

University of Sydney 13

Shadow Tree v.s. Bytecode

Shadow Tree
I Minimum implementation effort.

I Instruction set comes for ‘free’.
I Single pass generation.

I Runtime optimisations are
maintainable.
I Execution state inserted into

Shadow Nodes, without violating
engineering concern.

I Optimisation does not break error
reporting.

I Complexity of the algorithm well
contained in the tree node.

I Coarse-grained instruction set.

Bytecode
I Requires extra effort.

I Design a separate representation.
I Multiple passes to handle virtual

branch.

I Optimisations are tedious to
implement.
I Lose original information after

name encoding.
I Relies on separated data structure

- tight coupling.

I Fine-grained instruction set.

University of Sydney 13

Data Structure Adapter

I Dynamic information to initialize statically typed data structure:
I tuple size, indexing order, and implementation type (B-Tree, Trie, etc.)

I Features:

1. Uniformed interface with a type-erased adapter.
2. Factory method to produce data structure during runtime.
3. Reordering tuple before reading/writing.
4. Uniformed iterator with internal buffer to amortise virtual overhead.

University of Sydney 14

Data Structure Adapter

I Dynamic information to initialize statically typed data structure:
I tuple size, indexing order, and implementation type (B-Tree, Trie, etc.)

I Features:

1. Uniformed interface with a type-erased adapter.
2. Factory method to produce data structure during runtime.
3. Reordering tuple before reading/writing.

4. Uniformed iterator with internal buffer to amortise virtual overhead.

University of Sydney 14

Data Structure Adapter

I Dynamic information to initialize statically typed data structure:
I tuple size, indexing order, and implementation type (B-Tree, Trie, etc.)

I Features:

1. Uniformed interface with a type-erased adapter.
2. Factory method to produce data structure during runtime.
3. Reordering tuple before reading/writing.
4. Uniformed iterator with internal buffer to amortise virtual overhead.

University of Sydney 14

Data Structure Adapter

Stream

Source

Iterator

Data

buffer

a

b

c
d

e

a. Asking for new element.

b. Buffer is empty, trigger (virtual) read from Source.

c. Source reading data from underlying implementation.

d. Source write data into buffer.

e. Stream return data from buffer.

direct call
virtual call
data IO

University of Sydney 15

Performance Showdown

dd
is
as
m

S
p
ec
C
pu

de
al
II

dd
is
as
m

S
p
ec
C
pu

ga
m
es
s

D
o
op

an
tl
r

D
o
op

bl
oa
t

V
P
C
se
c1

N
10
75

V
P
C
se
c2

N
10
75

tc
(i
np
ut

=
20
00
)

0

500

1,000

1,500

391

1,370

101
69

514
556

1,349

283

1,142

104
68

459
503

1,123

121 122 112 111 134 140

2141

194

50 41

119 139

529

ti
m

e
sp

en
d

in
se

co
n

d
s

SVM STI Synthesiser Compilation Time Synthesiser Execution Time

University of Sydney 16

Impact of Instruction Set

I RAM produces heavily iterative-based computations. Under the hood, they are
based on C++ iterator objects.

I In SVM, iterative statements are computed using 2 instructions:
SVM Iterator Read and SVM Goto.

I Hence a for-loop of n iterations with one nested operation requires 3n dispatches.

University of Sydney 17

Impact of Instruction Set

I RAM produces heavily iterative-based computations. Under the hood, they are
based on C++ iterator objects.

I In SVM, iterative statements are computed using 2 instructions:
SVM Iterator Read and SVM Goto.

I Hence a for-loop of n iterations with one nested operation requires 3n dispatches.

University of Sydney 17

Impact of Instruction Set

I RAM produces heavily iterative-based computations. Under the hood, they are
based on C++ iterator objects.

I In SVM, iterative statements are computed using 2 instructions:
SVM Iterator Read and SVM Goto.

I Hence a for-loop of n iterations with one nested operation requires 3n dispatches.

University of Sydney 17

Impact of Instruction Set (cont’d)

STI instead relies on native C++ support and recursive function calls for nested
operations.

1 for (auto& tuple : relation) {

2 execute(node->nestedOperation);

3 }

Hence a for-loop of n iterations with one nested operation requires n+ 1 dispatches.

University of Sydney 18

Experiment on Semantic Density
Implementation Avg billions of dispatches per program Avg Inst per dispatches

VPC

SVM 19319.62 101.69
STI 17548.31 106.63

-9.91% +4.86%

ddisasm

SVM 27076.065 67.05
STI 17260.909 87.89

-36.37% +15.56%

Doop

SVM 633.89 109.37
STI 515.87 140.93

-18.62% +28.85%

tc

SVM 164.62 87.01
STI 128.84 77.33

-21.74% -11.12%

University of Sydney 19

Indirect Threaded Code
At the time of writting, the ”Threaded Code” version is up to 15% - 20% faster then
the normal ”switch” version, depending on the compiler and the CPU architecture.

2T
o3

ch
am

el
eo

n

ch
ao

s

cr
yp

to
py

ae
s

de
lt

ab
lu

e

dj
an

go
te

m
pl

at
e

du
lw

ic
h

lo
g

fa
nn

ku
ch

flo
at

ge
ns

hi
te

xt

ge
ns

hi
xm

l

go

lo
gg

in
g

si
le

nt
nb

od
y

pi
ck

le

pi
ck

le
lis

t

pi
di

gi
ts

re
ge

x
eff

b
ot

0.6

0.8

1
0.95

0.92
0.9

0.95
0.92 0.93

1.1

0.91

0.95

0.9
0.92 0.91

0.88
0.86

1

1.1

1
1.03

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ti
m

e
u

n
it

sp
en

d

Indirect Threaded Switch

University of Sydney 20

Indirect Threaded Code

N
-1

07
5

se
c1

N
-1

07
5

se
c2

N
-1

07
5

se
c3

N
-2

34
0

se
c1

N
-2

34
0

se
c2

N
-2

34
0

se
c3

N
-3

50
0

se
c1

N
-3

50
0

se
c2

N
-3

50
0

se
c3

N
-9

08
7

se
c1

N
-9

08
7

se
c2

N
-9

08
7

se
c3

N
-3

51
1

se
c1

N
-3

51
1

se
c2

N
-3

51
1

se
c3

0.6

0.8

1 0.98

1.05

0.99

1.05

0.97

0.93

1.03 1.03

0.97
1

1.02

0.95
0.98

1.02
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ti
m

e
u

n
it

sp
en

d

Indirect Threaded Switch

University of Sydney 20

Performance Model of STI

Overhead Contributions

VPC ddisasm DOOP tc
0

0.5

1

1.5

0.9
0.98

0.81

1.25
virtualization
dispatch

Operations distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N-1075

N-2340

N-9087

Sec1

Query-wise

Query-wise

Query-wise

Input-wise

Distribution Of Executed Instructions

Number TupleElement TupleOperation ExistenceCheck IndexScan IndexChoice Filter Project

University of Sydney 21

Super-Instruction

Attribute fields to imply operation types.
Node generateProject(RamNode* node) {

Node ret;

for (size_t i = 0; i < num_of_operations; ++i){

auto op = node.getChildren(i);

if (op.type == Constant) {

ret.addConstant((i,op));

} else if (op.type == TupleElement) {

ret.addTupleElement((i, op));

} else {

ret.addGenericExpression((i, op));

}

}

/** Other works **/

return ret;

}

Performance result

Improvement on STI with super-instruction

Query Pro-
gram

Input Data Reduce In
Dispatch

Improvement

N-1075 sec1 26.3% 1.042
N-1075 sec2 24.1% 1.018
N-1075 sec3 26.9% 1.076
N-2340 sec1 26.2% 1.132
N-2340 sec2 26.0% 1.127
N-2340 sec3 23.7% 1.127
N-9087 sec1 27.4% 1.185
N-9087 sec2 28.5% 1.233
N-9087 sec3 26.7% 1.161
N-3500 sec1 23.5% 1.139
N-3500 sec2 22.5% 1.136
N-3500 sec3 23.5% 1.183
N-3511 sec1 26.2% 1.132
N-3511 sec2 24.3% 1.131
N-3511 sec3 21.0% 1.080

University of Sydney 22

Contributions

1. A new tree interpretation strategy - Switch-based Shadow Tree Interpreter (SSTI);
and a Soufflé implementation (STI).

2. A stack-based VM implementation of Soufflé (SVM).

3. A dynamically typed adaptor interface to access the statically typed data
structures in Soufflé interpreter.

4. Performance evaluations of different interpreter architectures.

5. Review interpreter performance and branch optimisations on modern hardware
(ITC and super-instruction).

University of Sydney 23

Conclusion

1. Switch-based Shadow Tree - lightweight, efficient strategy to implement a
tree-walk interpreter.

2. Soufflé Tree Interpreter is only 2.11 - 5.88 times slower then synthesiser.

3. STI is 5 - 10% faster then Soufflé Virtual Machine because of the instruction set
design that fits better in the context of Soufflé.

4. Indirect threaded code has suboptimal performance on Soufflé with modern
hardware.

5. Super-instruction with statistics data brings STI 10% speedup.

University of Sydney 24

Reference I

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level. 1st. USA:
Addison-Wesley Longman Publishing Co., Inc., 1995. isbn: 0201537710.

Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. “Porting Doop to Soufflé: A Tale
of Inter-Engine Portability for Datalog-Based Analyses”. In: Proceedings of the 6th ACM SIGPLAN
International Workshop on State Of the Art in Program Analysis. SOAP 2017. Barcelona, Spain:
Association for Computing Machinery, 2017, 25–30. isbn: 9781450350723. doi:
10.1145/3088515.3088522. url: https://doi.org/10.1145/3088515.3088522.

John Backes et al. “Reachability Analysis for AWS-Based Networks”. In: July 2019, pp. 231–241. isbn:
978-3-030-25542-8. doi: 10.1007/978-3-030-25543-5_14.

Robert B. K. Dewar. “Indirect threaded code”. In: Communications of the ACM 18.6 (1975),
pp. 330–331. issn: 0001-0782. doi: 10.1145/360825.360849.

M. Anton Ertl and Gregg David. “Optimizing indirect branch prediction accuracy in virtual machine
interpreters”. In: ACM SIGPLAN Notices 38.5 (2003), pp. 278–288. issn: 0362-1340. doi:
10.1145/781131.781162.

Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. 1st ed.
Addison-Wesley Professional, 1994. isbn: 0201633612. url: http://www.amazon.com/Design-
Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1.

University of Sydney 25

https://doi.org/10.1145/3088515.3088522
https://doi.org/10.1145/3088515.3088522
https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1145/360825.360849
https://doi.org/10.1145/781131.781162
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1

Reference II

Neville Grech et al. “Gigahorse: Thorough, Declarative Decompilation of Smart Contracts”. In:
Proceedings of the 41st International Conference on Software Engineering. ICSE ’19. Montreal, Quebec,
Canada: IEEE Press, 2019, 1176–1186. doi: 10.1109/ICSE.2019.00120. url:
https://doi.org/10.1109/ICSE.2019.00120.

Herbert Jordan, Bernhard Scholz, and Pavle Subotic. “Soufflé: On Synthesis of Program Analyzers”. In:
CAV. 2016.

Herbert Jordan et al. “A Specialized B-Tree for Concurrent Datalog Evaluation”. In: Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming. PPoPP ’19. Washington, District
of Columbia: Association for Computing Machinery, 2019, 327–339. isbn: 9781450362252. doi:
10.1145/3293883.3295719. url: https://doi.org/10.1145/3293883.3295719.

Herbert Jordan et al. “Brie: A Specialized Trie for Concurrent Datalog”. In: Proceedings of the 10th
International Workshop on Programming Models and Applications for Multicores and Manycores.
PMAM’19. Washington, DC, USA: Association for Computing Machinery, 2019, 31–40. isbn:
9781450362900. doi: 10.1145/3303084.3309490. url: https://doi.org/10.1145/3303084.3309490.

Erven Rohou, Bharath Narasimha Swamy, and André Seznec. “Branch Prediction and the Performance
of Interpreters -Don’t Trust Folklore”. In: International Symposium on Code Generation and
Optimization (2015).

University of Sydney 26

https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1145/3303084.3309490
https://doi.org/10.1145/3303084.3309490

Reference III

Bernhard Scholz et al. “On Fast Large-Scale Program Analysis in Datalog”. In: Proceedings of the 25th
International Conference on Compiler Construction. CC 2016. Barcelona, Spain: Association for
Computing Machinery, 2016, 196–206. isbn: 9781450342414. doi: 10.1145/2892208.2892226. url:
https://doi.org/10.1145/2892208.2892226.

Pavle Subotić et al. “Automatic Index Selection for Large-Scale Datalog Computation”. In: Proc. VLDB
Endow. 12.2 (Oct. 2018), 141–153. issn: 2150-8097. doi: 10.14778/3282495.3282500. url:
https://doi.org/10.14778/3282495.3282500.

University of Sydney 27

https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.14778/3282495.3282500
https://doi.org/10.14778/3282495.3282500

	Introduction
	datalog soufflé and ram
	Background
	Shadow Tree
	Implementation
	Data Structure
	Performance
	Experiment
	Contributions
	Conclusion
	References

